Graphical Abstract Spontaneous solar-driven water splitting into H2 and O2, that is, the conversion of solar energy into chemical energy, is being intensively investigated. In their Communication on page 2160 ff., M. Fujitsuka, T. Majima et al. present a new 2D heterostructure of black phosphorus and bismuth vanadate for photocatalytic water splitting without any sacrificial agents under visible-light irradiation. The Z-scheme architectural band structures contribute to an effective charge separation.
The Cover Feature illustrates the low-cost Fe2P as a cocatalyst hybridized with g-C3N4 for photocatalytic H2 generation under visible-light exposure. The enhanced photocatalytic H2 generation performance was attributed to the effective interfacial charge transfer between Fe2P and g-C3N4. The study demonstrates significant potential for the application of noble-metal-free Fe2P. More information can be found in the Article by Z. Sun et al. on page 540 in Issue 7, 2019 (DOI: 10.1002/cptc.201800260).
Purpose: Non-invasive methods are urgently needed to assess the efficacy of transarterial chemoembolization (TACE) and to identify patients with hepatocellular carcinoma (HCC) who may benefit from this procedure. This study, therefore, aimed to investigate the predictive ability of tumor growth patterns and radiomics features from contrast-enhanced magnetic resonance imaging (CE-MRI) in predicting tumor response to TACE among patients with HCC. Patients and Methods: A retrospective study was conducted on 133 patients with HCC who underwent TACE at three centers between January 2015 and April 2023. Enrolled patients were divided into training, testing, and validation cohorts. Rim arterial phase hyperenhancement (Rim APHE), tumor growth patterns, nonperipheral washout, markedly low apparent diffusion coefficient (ADC) value, intratumoral arteries, and clinical baseline features were documented for all patients. Radiomics features were extracted from the intratumoral and peritumoral regions across the three phases of CE-MRI. Seven prediction models were developed, and their performances were evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). Results: Tumor growth patterns and albumin-bilirubin (ALBI) score were significantly correlated with tumor response. Tumor growth patterns also showed a positive correlation with tumor burden (r = 0.634, P = 0.000). The Peritumor (AUC = 0.85, 0.71, and 0.77), Clinics_Peritumor (AUC = 0.86, 0.77, and 0.81), and Tumor_Peritumor (AUC = 0.87, 0.77, and 0.80) models significantly outperformed the Clinics and Tumor models (P < 0.05), while the Clinics_Tumor_Peritumor model (AUC = 0.88, 0.81, and 0.81) outperformed the Clinics (AUC = 0.67, 0.77, and 0.75), Tumor (AUC = 0.78, 0.72, and 0.68), and Clinics_Tumor (AUC = 0.82, 0.83, and 0.78) models (P < 0.05 or 0.053, respectively). The DCA curve demonstrated better predictive performance within a specific threshold probability range for Clinics_Tumor_Peritumor. Conclusion: Combining tumor growth patterns, intra- and peri-tumoral radiomics features, and ALBI score could be a robust tool for non-invasive and personalized prediction of treatment response to TACE in patients with HCC. Keywords: hepatocellular carcinoma, radiomics, tumor growth pattern, transarterial chemoembolization
Upgrading furfural (FAL) to cyclopentanone (CPO) is of great importance for the synthesis of high-value chemicals and biomass utilization. The hydrogenative ring-rearrangement of FAL is catalyzed by metal-acid bifunctional catalysts. The Lewis acidity is a key factor in promoting the rearrangement of furan rings and achieving a high selectivity to CPO. In this work, highly dispersed Pd nanoparticles were successfully encapsulated into the cavities of a Zr based MOF, UiO-66-NO2, by impregnation using a double-solvent method (DSM) followed by H2 reduction. The obtained Pd/UiO-66-NO2 catalyst showed a significantly better catalytic performance in the aforementioned reaction than the Pd/UiO-66 catalyst due to the higher Lewis acidity of the support. Moreover, by using a thermal treatment. The Lewis acidity can be further increased through the creating of missing-linker defects. The resulting defective Pd/UiO-66-NO2 exhibited the highest CPO selectivity and FAL conversion of 96.6% and 98.9%, respectively. In addition, the catalyst was able to maintain a high activity and stability after four consecutive runs. The current study not only provides an efficient catalytic reaction system for the hydrogenative ring-rearrangement of furfural to cyclopentanone but also emphasizes the importance of defect sites.