Engineering organ-specific tissues for therapeutic applications is a grand challenge, requiring the fabrication and maintenance of densely cellular constructs composed of ~108 cells/ml. Organ building blocks (OBBs) composed of patient-specific-induced pluripotent stem cell-derived organoids offer a pathway to achieving tissues with the requisite cellular density, microarchitecture, and function. However, to date, scant attention has been devoted to their assembly into 3D tissue constructs. Here, we report a biomanufacturing method for assembling hundreds of thousands of these OBBs into living matrices with high cellular density into which perfusable vascular channels are introduced via embedded three-dimensional bioprinting. The OBB matrices exhibit the desired self-healing, viscoplastic behavior required for sacrificial writing into functional tissue (SWIFT). As an exemplar, we created a perfusable cardiac tissue that fuses and beats synchronously over a 7-day period. Our SWIFT biomanufacturing method enables the rapid assembly of perfusable patient- and organ-specific tissues at therapeutic scales.
Soft robotic grippers enable gentle, adaptive, and bioinspired manipulation that is simply not possible using traditional rigid robots. However, it has remained challenging to create multi-degree-of-freedom soft actuators with appropriate sensory capabilities for soft manipulators requiring greater dexterity and closed-loop control. In this work, we use embedded 3D printing to produce soft robotic fingers with discrete actuation modes and integrated ionogel soft sensors that provide proprioceptive and tactile sensing corresponding to each degree of freedom. With new readout electronics that streamline the measurement of sensor resistance, we evaluate the fingers' sensory feedback through free and blocked displacement experiments. We integrate three of our sensorized fingers together to create a soft manipulator with different grasping poses. Finally, we showcase the importance of the fingers' discrete actuation modes and integrated sensors via a closed-loop grasping study. Our methods demonstrate an enabling manufacturing platform that can be adapted to create other soft multi-DOF manipulators requiring somatosensory feedback for a variety of closed-loop and machine learning-based control algorithms.
Untethered operation remains a fundamental challenge in soft robotics. Soft robotic actuators are generally unable to produce the forces required for carrying essential power and control hardware on-board. Moreover, current untethered soft robots often have low operating times given soft actuators' limited efficiency and lifetime. Here, we 3D print cylindrical handed shearing auxetics (HSAs) from single-cure polyurethane resins for use as scalable, motorized soft robotic actuators for untethered machines. Mechanical characterization of individual HSAs confirms their auxetic behaviors and suitability as actuators. HSA pairs of opposite handedness are assembled to form multi-degree-of-freedom legs for untethered quadrupeds. We explore several leg designs to understand the role of length and auxetic pattern density on overall motion and blocked force generated. Finally, we demonstrate untethered locomotion with two soft robotic quadrupeds. We find that our taller soft robot is capable of walking at 2 body lengths per min (BL min-1) for 65 min, all while carrying a payload of at least 1.5 kg. We compare our soft robots' capabilities to those of previously reported untethered, terrestrial systems and find that our motorized HSAs lead to the second highest operating time with an above average velocity. We anticipate that these methods will open new avenues for designing untethered soft robots with the robustness, operating times, and payload capacities required for future fundamental investigations in embodied intelligence and adaptive, physical learning.
In article number 1706164, Jennifer Lewis and co-workers fabricate 3D liquid-crystal elastomer actuators with programmed director alignment. Complex architectures (such as this spiral motif imaged between crossed polarizers) are 3D printed, which are capable of lifting large weights and reversibly transforming their shape upon thermal cycling.
Structural electrolytes present advantages over liquid varieties, which are critical to myriad applications. In particular, structural electrolytes based on polymerized ionic liquids or poly(ionic liquids) (pILs) provide wide electrochemical windows, high thermal stability, nonvolatility, and modular chemistry. However, current methods of fabricating structural electrolytes from pILs and their composites present limitations. Recent advances have been made in 3D printing pIL electrolytes, but current printing techniques limit the complexity of forms that can be achieved, as well as the ability to control mechanical properties or conductivity. We introduce a method for fabricating architected pIL composites as structural electrolytes via embedded 3D (EMB3D) printing. We present a modular design for formulating ionic liquid (IL) monomer composite inks that can be printed into sparse, lightweight, free-standing lattices with different functionalities. In addition to characterizing the rheological and mechanical behaviors of IL monomer inks and pIL lattices, we demonstrate the self-sensing capabilities of our printed structural electrolytes during cyclic compression. Finally, we use our inks and printing method to spatially program self-sensing capabilities in pIL lattices through heterogeneous architectures as well as ink compositions that provide mixed ionic-electronic conductivity. Our free-form approach to fabricating structural electrolytes in complex, 3D forms with programmable, anisotropic properties has broad potential use in next-generation sensors, soft robotics, bioelectronics, energy storage devices, and more.
It was demonstrated that the response of insects to low pressures is temperature and moisture dependent. Trogoderma granarium quiescent larvae were considered the most resistant storage insects tested, a 172-h exposure to 25 mm Hg being necessary for their control at 30oC. To control them within a 145-h exposure time it was necessary to increase the temperature to 35oC. In field trials with Ephestia cautella and Plodia interpunctella on the other hand total kill was achieved at 21.3 0 C in 3 days The encouraging reports led to the idea of developing a transportable system to render the technology a practical tool for the control of insect pests. Two sets of experiments were carried out using a 15 m 3 capacity plastic container termed the “GrainPro Cocoons™” or “Volcani Cube ®” . This container is made of a flexible liner and characterized by its transportability. The first test was carried out in Foxboro MA, USA using an oil-lubricated vacuum pump (3 hp) to reduce the pressure to 25mm Hg within 25 min. Then the pressure was maintained between 25 and 29 mm Hg for 17 days. Three sets of bioassay replicates were retrieved on day 3, 10, and 17 of treatment. Complete mortality of test insects was observed after the 3-days exposure to vacuum. The second test using vacuum was carried out in Israel using a similar set-up for the vacuum pump and the Volcani Cube. The purpose of these tests was to evaluate the technology so as to contribute to improved performance. Vacuum was maintained within 22 and 75 mm Hg for over 25 days.