The BCAP31 gene is located between SLC6A8, associated with X-linked creatine transporter deficiency, and ABCD1, associated with X-linked adrenoleukodystrophy. Recently, loss-of-function mutations in BCAP31 were reported in association with severe developmental delay, deafness and dystonia. We characterized the break points in eight patients with deletions of SLC6A8, BCAP31 and/or ABCD1 and studied the genotype-phenotype correlations. The phenotype in patients with contiguous gene deletions involving BCAP31 overlaps with the phenotype of isolated BCAP31 deficiency. Only deletions involving both BCAP31 and ABCD1 were associated with hepatic cholestasis and death before 1 year, which might be explained by a synergistic effect. Remarkably, a patient with an isolated deletion at the 3'-end of SLC6A8 had a similar severe phenotype as seen in BCAP31 deficiency but without deafness. This might be caused by the disturbance of a regulatory element between SLC6A8 and BCAP31.
Creatine transporter deficiency is a monogenic cause of X-linked intellectual disability. Since its first description in 2001 several case reports have been published but an overview of phenotype, genotype and phenotype–genotype correlation has been lacking.
Methods
We performed a retrospective study of clinical, biochemical and molecular genetic data of 101 males with X-linked creatine transporter deficiency from 85 families with a pathogenic mutation in the creatine transporter gene (SLC6A8).
Results and conclusions
Most patients developed moderate to severe intellectual disability; mild intellectual disability was rare in adult patients. Speech language development was especially delayed but almost a third of the patients were able to speak in sentences. Besides behavioural problems and seizures, mild to moderate motor dysfunction, including extrapyramidal movement abnormalities, and gastrointestinal problems were frequent clinical features. Urinary creatine to creatinine ratio proved to be a reliable screening method besides MR spectroscopy, molecular genetic testing and creatine uptake studies, allowing definition of diagnostic guidelines. A third of patients had a de novo mutation in the SLC6A8 gene. Mothers with an affected son with a de novo mutation should be counselled about a recurrence risk in further pregnancies due to the possibility of low level somatic or germline mosaicism. Missense mutations with residual activity might be associated with a milder phenotype and large deletions extending beyond the 3′ end of the SLC6A8 gene with a more severe phenotype. Evaluation of the biochemical phenotype revealed unexpected high creatine levels in cerebrospinal fluid suggesting that the brain is able to synthesise creatine and that the cerebral creatine deficiency is caused by a defect in the reuptake of creatine within the neurones.
We show here that the radiosensitive Chinese hamster cell mutant (V-C8) of group XRCC11 is defective in the breast cancer susceptibility gene Brca2. The very complex phenotype of V-C8 cells is complemented by a single human chromosome 13 providing the BRCA2 gene, as well as by the murine Brca2 gene. The Brca2 deficiency in V-C8 cells causes hypersensitivity to various DNA-damaging agents with an extreme sensitivity toward interstrand DNA cross-linking agents. Furthermore, V-C8 cells show radioresistant DNA synthesis after ionizing radiation, suggesting that Brca2 deficiency affects cell cycle checkpoint regulation. In addition, V-C8 cells display tremendous chromosomal instability and a high frequency of abnormal centrosomes. The mutation spectrum at the hprt locus showed that the majority of spontaneous mutations in V-C8 cells are deletions, in contrast to wild-type V79 cells. A mechanistic explanation for the genome instability phenotype of Brca2-deficient cells is provided by the observation that the nuclear localization of the central DNA repair protein in homologous recombination, Rad51, is reduced in V-C8 cells.
Ku, a heterodimer of ∼70 and ∼80 kDa subunits, is a nuclear protein that binds to double-stranded DNA ends and is a component of the DNA-dependent protein kinase (DNA-PK). Cell lines defective in Ku80 belong to group XRCC5 of ionizing radiation-sensitive mutants. Five new independent Chinese hamster cell mutants, XR-V10B, XR-V11B, XR-V12B, XR-V13B and XR-V16B, that belong to this group were isolated. To shed light on the nature of the defect in Ku80, the molecular and biochemical characteristics of these mutants were examined. All mutants, except XR-V12B, express Ku80 mRNA, but no Ku80 protein could clearly be detected by immunoblot analysis in any of them. DNA sequence analysis of the Ku80 cDNA from these mutants showed a deletion of 252 bp in XR-V10B; a 6 bp deletion that results in a new amino acid residue at position 107 and the loss of two amino acid residues at positions 108 and 109 in XR-V11B; a missense mutation resulting in a substitution of Cys for Tyr at position 114 in XR-V13B; and two missense mutations in XR-V16B, resulting in a substitution of Met for Val at position 331 and Arg for Gly at position 354. All these mutations cause a similar, 5–7-fold, increase in X-ray sensitivity in comparison to wild-type cells, and a complete lack of DNA-end binding and DNA-PK activities. This indicates that all these mutations lead to loss of the Ku80 function due to instability of the defective protein.