Background We describe a four-generation Italian family with familial hemiplegic migraine (FHM) and epilepsy due to a novel ATP1A2 missense mutation (R1007W). Case results Mutational analysis revealed a heterozygous nucleotide substitution c.3019C>T resulting in the missense substitution p.Arg1007Trp (p.R1007W) in seven subjects: Three individuals had hemiplegic migraine, two exhibited a clinical overlap between migraine and epilepsy, one had migraine and one was unaffected. The identified ATP1A2 mutation was not found in an ethnically matched control population of 190 individuals and was not reported in a polymorphisms database. In two-electrode voltage-clamp experiments on Xenopus oocytes, the ATP1A2 R1007W mutant showed (i) reduced ion pumping activity due to a more profound voltage dependence and (ii) decreased apparent affinity for extracellular K + at voltages around the cellular resting potential. This distinct type of loss of function has not been reported for other FHM2 mutations and can lead to impaired K+ clearance and elevated K + levels in the CNS. Conclusions The functional data and clinical evidence suggest that in FHM2 migraine and epilepsy may originate from the same pathogenic mechanisms associated with genetically determined alterations of ion channels and pumps. Our data also support the hypothesis that the new mutation R1007W in our family may be a susceptibility factor for epilepsy.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
ABSTRACT National public opinion polls that were conducted from 1947 to 2005 found that Americans' reported alcohol consumption remained fairly constant. Although alcohol use has remained consistent, the findings reveal that consumption levels vary by age, gender, race, ethnicity, and socioeconomic status. The results also show an increase in the number of reported problems within families that are due to excessive alcohol consumption. This article examines the differences in alcohol consumption levels related to these various demographic factors and explores the impact of alcohol use among families and implications for social work practice.
Prognosis for children with glioblastoma is unacceptably poor. Modest improvements in progression-free survival were seen in adults with glioblastoma by combining temozolomide and bevacizumab with conformal radiation. We retrospectively reviewed 3 cases of glioblastoma in children treated using upfront bevacizumab and temozolomide during radiation, followed by 12 cycles of maintenance therapy. All patients completed therapy with minimal toxicity and no delays in treatment. Two patients remain disease free at 38 and 49 months from diagnosis. One patient recurred 14 months off therapy and currently receives salvage therapy 48 months from diagnosis. These results support further investigation of this regimen.
Larger clinical trial enrollments and a greater understanding of biological heterogeneity have led to improved survival rates for children diagnosed with brain tumors in the last 50 years. However, reducing long-term morbidities and improving survival rates of high-risk tumors remain major challenges. Chemotherapy can reduce tumor burden, but effective drug penetration at the tumor site is limited by barriers in the route of drug administration and within the tumor microenvironment. Bioavailability of drugs is impeded by the blood-brain barrier, plasma protein binding, and structural components by the tumor including the matrix and vasculature contributing to increased interstitial fluid pressure, hypoxia, and acidity. Designing drug delivery systems to circumvent these barriers could lead to improved drug penetration at the tumor site and reduce adverse systemic side effects. In this review, we expand on how systemic and local barriers limit drug penetration and present potential methods to enhance drug penetration in pediatric brain tumors.
Abstract Background Pediatric-type diffuse low-grade gliomas (pLGG) harboring recurrent genetic alterations involving MYB or MYBL1 are closely related tumors. Detailed treatment and outcome data of large cohorts are still limited. This study aimed to comprehensively evaluate pLGG with these alterations to define optimal therapeutic strategies. Methods We retrospectively reviewed details of pLGG with MYB or MYBL1 alterations from patients treated or referred for pathologic review at St. Jude Children’s Research Hospital. Tumor specimens were centrally reviewed, and clinical data were collated. Results Thirty-three patients (18 male; median age, 5 years) were identified. Two tumors had MYBL1 alterations; 31 had MYB alterations, MYB::QKI fusion being the most common (n = 10, 30%). Most tumors were in the cerebral hemispheres (n = 22, 67%). Two patients (6%) had metastasis at diagnosis. The median follow-up was 6.1 years. The 5-year event-free survival (EFS) rate was 81.3% ± 8.3%; the 5-year overall survival (OS) rate was 96.4% ± 4.1%. Patients receiving a near-total or gross-total resection had a 5-year EFS of 100%; those receiving a biopsy or subtotal resection had a 5-year EFS rate of 56.6% ± 15.2% (P < .01). No difference in EFS was observed based on location, histology, or molecular alterations. However, the tumors that progressed or metastasized may have distinct methylation profiles with evidence of activation of the MAPK and PI3K/AKT/mTOR pathways. Conclusions pLGG with MYB/MYBL1 alterations have good outcomes. Our findings suggest that surgical resectability is a crucial determinant of EFS. Further characterization is required to identify optimal treatment strategies for progressive tumors.
Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth, and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.
Laparoscopic surgery is the main treatment method for patients with gastrointestinal malignant tumors. Although laparoscopic surgery is minimally invasive, its tool stimulation and pneumoperitoneum pressure often cause strong stress reactions in patients. On the other hand, gastrointestinal surgery can cause stronger pain in patients, compared to other surgeries. Transversus abdominis plane block (TAPB) can effectively inhibit the transmission of nerve impulses caused by surgical stimulation, alleviate patient pain, and thus alleviate stress reactions. Remazolam is an acting, safe, and effective sedative, which has little effect on hemodynamics and is suitable for most patients. TAPB combined with remazolam can reduce the dosage of total anesthetic drugs, reduce adverse reactions, reduce stress reactions, and facilitate the rapid postoperative recovery of patients.