The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months.In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on immunized cattle that showed anti-Bm86 specific titers in the range of 1:640 to 1:81920.The administration of two initial doses of Gavacplus containing 100 μg of Bm86 antigen to non-immunized cattle under production conditions is sufficient to affect the weight and the reproductive capacity of R. microplus engorging females. According to these results, cattle herds' manipulation and vaccine costs could be potentially reduced with a positive impact on the implementation of integrated control programs against R. microplus.
HIV infection promotes the expansion of immunosuppressive regulatory T-cells (Tregs), contributing to immune dysfunction, tissue fibrosis and disease progression. Early antiretroviral treatment (ART) upon HIV infection improves CD4 count and decreases immune activation. However, Treg dynamics and their epigenetic regulation following early ART initiation remain understudied.Treg subsets were characterized by flow cytometry in 103 individuals, including untreated HIV-infected participants in acute and chronic phases, ART-treated in early infection, elite controllers (ECs), immunological controllers (ICs), and HIV-uninfected controls. The methylation status of six regulatory regions of the foxp3 gene was assessed using MiSeq technology.Total Treg frequency increased overtime during HIV infection, which was normalized in early ART recipients. Tregs in untreated individuals expressed higher levels of activation and immunosuppressive markers (CD39, and LAP(TGF-β1)), which remained unchanged following early ART. Expression of gut migration markers (CCR9, Integrin-β7) by Tregs was elevated during untreated HIV infection, while they declined with the duration of ART but not upon early ART initiation. Notably, gut-homing Tregs expressing LAP(TGF-β1) and CD39 remained higher despite early treatment. Additionally, the increase in LAP(TGF-β1)+ Tregs overtime were consistent with higher demethylation of conserved non-coding sequence (CNS)-1 in the foxp3 gene. Remarkably, LAP(TGF-β1)-expressing Tregs in ECs were significantly higher than in uninfected subjects, while the markers of Treg activation and gut migration were not different.Early ART initiation was unable to control the levels of immunosuppressive Treg subsets and their gut migration potential, which could ultimately contribute to gut tissue fibrosis and HIV disease progression.This study was funded by the Canadian Institutes of Health Research (CIHR, grant MOP 142294) and in part by the AIDS and Infectious Diseases Network of the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
The Bm86 antigen has been used to control ticks of the Boophilus genera in integrated programs that also include the use of acaricides. Because of recent phylogenetic studies have lead to the inclusion of all Boophilus species within the Rhipicephalus genera, we aimed to investigate the efficacy of the Bm86 antigen on the biotic potential of Rhipicephalus sanguineus. Domestic dogs were vaccinated with Bm86 and challenged with the three instars of R. sanguineus. Male and female mongrel dogs were divided into two groups of four animals each, comprising non-vaccinated and vaccinated animals. Immunized dogs were given two doses of an experimental formulation containing 50mug of recombinant Bm86, at 21 days interval while the other group was given placebo, consisting of the same preparation without Bm86. Each dog was challenged 21 days after the last dose with 250 larvae, 100 nymphs and 55 adults (25 females and 30 males) released inside feeding chambers (one per instar) glued to their shaved flank. The effect of the vaccination was evaluated by determining biological parameters of ticks including the yield rates of larvae, nymphs and adult females. Adult females engorged weight, egg mass weight, efficiency rate of conversion to eggs (ERCE) and hatchability. In addition, sera were collected from dogs at 0, 21, 36, 45 and 75 days after the vaccination and used for the detection of specific antibodies by ELISA. Collection rates of larvae, nymphs and adult females fed on vaccinated dogs were significantly (p<0.05) reduced by 38%, 29% and 31%, respectively, as compared with non-vaccinated controls. Significant reductions were also observed in weight of engorged females and egg mass, in ERCE, but not in the hatch rate of ticks fed on immunized dogs. ELISA data revealed a marked and significant increase in optical densities of sera from vaccinated animals after the second dose of Bm86. We concluded that the Bm86 antigen used as a vaccine for dogs reduced the viability and biotic potential of the R. sanguineus.
Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in six commercial chicken farms across areas of central Ethiopia to identify the circulating NDV strains. Thirty pooled tissue specimens were collected from chickens suspected of being infected with NDV. A questionnaire survey of farm owners and veterinarians was also carried out to collect information on the farms and the outbreak status. NDV was isolated using specific-pathogen-free (SPF)-embryonated chicken eggs and detected using haemagglutination and the reverse transcriptase–polymerase chain reaction (RT–PCR). The genotype and virulence of field NDV isolates were determined using phylogenetic analysis of fusion (F) protein gene sequences and the mean death time (MDT) test in SPF-embryonated chicken eggs. The questionnaire results revealed that ND caused morbidity (23.1%), mortality (16.3%), case fatality (70.8%), and significant economic losses. Eleven of thirty tissue specimens tested positive for NDV using haemagglutination and RT–PCR. The MDT testing and sequence analysis revealed the presence of virulent NDV classified as genotype VII of class II velogenic pathotype and distinct from locally used vaccine strains (genotype II). The amino acid sequences of the current virulent NDV fusion protein cleavage site motif revealed 112RRQKR↓F117, unlike the locally used avirulent vaccine strains (112GRQGR↓L117). The epidemiological data, MDT results, cleavage site sequence, and phylogenetic analysis all indicated that the present NDV isolates were virulent. The four NDV sequences were deposited in GenBank with accession numbers F gene (PP726912-15) and M gene (PP726916-19). The genetic difference between avirulent vaccine strains and circulating virulent NDV could explain the low level of protection provided by locally used vaccines. Further studies are needed to better understand the circulating NDV genotypes in different production systems.
Abstract In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality. However, during the biphasic production of viral vectors or replication‐competent viruses for gene and cell therapies and vaccination, current monitoring techniques relying on a single working sensor can be affected by the physiological state change of the cells due to infection/transduction/transfection step required to initiate production. To address this limitation, a multisensor (MS) monitoring system, which includes dual‐wavelength fluorescence spectroscopy, dielectric signals, and a set of CPPs, such as oxygen uptake rate and pH control outputs, was employed to monitor the upstream process of adenovirus production in HEK293 cells in bioreactor. This system successfully identified characteristic responses to infection by comparing variations in these signals, and the correlation between signals and target critical variables was analyzed mechanistically and statistically. The predictive performance of several target CPPs using different multivariate data analysis (MVDA) methods on data from a single sensor/source or fused from multiple sensors were compared. An MS regression model can accurately predict viable cell density with a relative root mean squared error (rRMSE) as low as 8.3% regardless of the changes occurring over the infection phase. This is a significant improvement over the 12% rRMSE achieved with models based on a single source. The MS models also provide the best predictions for glucose, glutamine, lactate, and ammonium. These results demonstrate the potential of using MVDA on MS systems as a real‐time monitoring approach for biphasic bioproduction processes. Yet, models based solely on the multiplicity and timing of infection outperformed both single‐sensor and MS models, emphasizing the need for a deeper mechanistic understanding in virus production prediction.
CD8 T cells are key players in the clearance of human immunodeficiency virus (HIV)-infected cells, such that CD8 T-cell dysfunction contributes to viral persistence despite antiretroviral (ARV) therapy. Mesenteric lymph nodes (MLNs) are major sites of gut mucosal immunity. While different CD8 T cell subsets such as CD8 alpha-alpha (CD8αα), CD8 alpha-beta (CD8αβ), CD8 regulatory T cells (Treg), and mucosa-associated invariant T cells (MAIT) are present in the gut and exhibit distinct functions, their dynamics remain poorly understood due to the lack of accessibility to these tissues in humans. We thus assessed CD8 T cells in MLNs versus peripheral blood in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) following early ARV therapy initiation. SIV infection was associated with an increase over time of both CD8αβ and CD8αα T cells in the blood and MLNs, whereas early ARV initiation significantly decreased the frequencies of CD8αα but not CD8αβ T cells in MLNs. A significant decrease in the expression of chemokine receptors CCR6 and CXCR3 by CD8 T cells, which are essential for T-cell trafficking to the inflammatory sites, was observed in chronically SIV-infected RMs. Surprisingly, while MAIT cells are increased in ARV-treated RMs, their frequencies in MLN are extremely low and were not impacted by ARV. The acute infection resulted in an early CD39+FoxP3+ CD8 Tregs increase in both compartments, which was normalized after early ARV. Frequencies of CD8 Treg cells were positively correlated with frequencies of CD4 Tregs and accordingly negatively correlated with the Th17/Treg ratio in the blood but not in MLNs. Overall, our results underscore the difference in CD8 T-cell subset dynamics in the blood and MLNs. IMPORTANCE Changes in CD8 T-cell subsets during acute SIV/HIV infections and following early ARV initiation in gut lymphoid tissues are poorly understood. Using an acute SIV infection model in rhesus macaques, we assessed the impact of early ARV, initiated 4 days postinfection, on relative proportions of CD8 T-cell subsets in MLNs compared to blood. We found that acute SIV infection and early ARV initiation differentially affect the distribution of effector CD8 T cells, CD8 MAIT cells, and CD8 Tregs in MLNs compared to blood. Overall, early ARV initiation maintains the frequency of effector CD8 T cells while reducing immunosuppressive CD39+ CD8 Tregs. Our study provides deeper insight into the dynamics of the CD8 T-cell compartment in gut mucosal immune surveillance during acute SIV infection and following early ARV initiation.
The ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms-technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID50 and ddPCR) are developed to quantify infectious and total viral titer. NDV-GFP and NDV-FLS (SARS-CoV-2 full-length spike protein) constructs were adapted to replicate in Vero and HEK293 suspension cultures using serum-free media, while fine-tuning parameters such as MOI, temperature, and trypsin concentration. Shake flask productions with Vero cells resulted in infectious titers of 1.07 × 108 TCID50/mL for NDV-GFP and 1.33 × 108 TCID50/mL for NDV-FLS. Production in 1 L batch bioreactors also resulted in high titers in culture supernatants, reaching 2.37 × 108 TCID50/mL for NDV-GFP and 3.16 × 107 TCID50/mL for NDV-FLS. This shows effective NDV production in cell culture, building the basis for a scalable vectored-vaccine manufacturing process that can be applied to different targets.