The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 15,000,000 infections and 600,000 deaths worldwide to date. Antibody development efforts mainly revolve around the extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates the host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2). Similar to many other viruses, the SARS-CoV-2 spike utilizes a glycan shield to thwart the host immune response. Here, we built a full-length model of glycosylated SARS-CoV-2 S protein, both in the open and closed states, augmenting the available structural and biological data. Multiple microsecond-long, all-atom molecular dynamics simulations were used to provide an atomistic perspective on the roles of glycans, and the protein structure and dynamics. We reveal an essential structural role of N-glycans at sites N165 and N234 in modulating the conformational dynamics of the spike's receptor binding domain (RBD), which is responsible for ACE2 recognition. This finding is corroborated by biolayer interferometry experiments, which show that deletion of these glycans through N165A and N234A mutations significantly reduces binding to ACE2 as a result of the RBD conformational shift towards the "down" state. Additionally, end-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of SARS-CoV-2 S protein, which may be exploited by therapeutic efforts targeting this molecular machine. Overall, this work presents hitherto unseen functional and structural insights into the SARS-CoV-2 S protein and its glycan coat, providing a strategy to control the conformational plasticity of the RBD that could be harnessed for vaccine development.
Summary Reservoir monitoring or surveillance is crucial for a responsible and efficient use of subsurface reservoirs. In both production and storage systems, operators need to demonstrate that their assets can be managed in a safe way. Effective monitoring practices also help operators unlock additional value from their assets, by revising expectations, gaining confidence on their projected potentials and allowing development strategies to be adjusted. The design of monitoring systems can be a challenge for both subsurface operators and regulators. The main difficulties range from the technical uncertainties on subsurface characterization and the unavailability of direct measurements to the lack of technologies to support monitoring design decisions. As a step to bridge this gap, we have developed a quantitative value-of-information (VOI) methodology within the context of conformance management in CO2 storage operations. It is a practical model-based approach that uses a Bayesian framework to derive a measure of the expected contribution of (future) measurements from candidate monitoring strategies for discrimination of conformance and non-conformance situations. In this work we integrate our practical VOI approach into an optimization workflow. This novel workflow is applied to determine the optimal design of time-lapse seismic surveys in a realistic CO2 storage case study. Obviously, the larger the spatial coverage of the survey, the more informative it will be. Therefore, the search for cheaper sparse survey designs is by nature a bi-objective problem which needs to consider both the accuracy requirements and the costs of the survey in the same optimization. Our optimization workflow also accounts for the uncertainties associated with the reservoir system by using ensembles of plausible measurement outcomes and model realizations. Our results show that sparse survey designs can be optimized to reduce costs while keeping accuracy levels comparable to denser designs. Our results also suggest that optimal survey configurations lie on a Pareto front of the two objectives considered, corroborating the idea that the design of cost-efficient monitoring strategies has a multi-objective character.
ABSTRACT The tumor suppressor p53 is the most frequently mutated gene in human cancer, and thus reactivation of mutated p53 is a promising avenue for cancer therapy. Analysis of wildtype p53 and the Y220C cancer mutant long-timescale molecular dynamics simulations with Markov state models and validation by NMR relaxation studies has uncovered the involvement of loop L6 in the slowest motions of the protein. Due to its distant location from the DNA-binding surface, the conformational dynamics of this loop has so far remained largely unexplored. We observe mutation-induced stabilization of alternate L6 conformations, distinct from all experimentally-determined structures, in which the loop is both extended and located further away from the DNA-interacting surface. Additionally, the effect of the L6-adjacent Y220C mutation on the conformational landscape of the functionally-important loop L1 suggests an allosteric role to this dynamic loop and the inactivation mechanism of the mutation. Finally, the simulations reveal a novel Y220C cryptic pocket that can be targeted for p53 rescue efforts. Our approach exemplifies the power of the MSM methodology for uncovering intrinsic dynamic and kinetic differences among distinct protein ensembles, such as for the investigation of mutation effects on protein function.
Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.
The tumor suppressor p53 is the most frequently mutated gene in human cancer, and thus reactivation of mutated p53 is a promising avenue for cancer therapy. Analysis of wildtype p53 and the Y220C cancer mutant long-timescale molecular dynamics simulations with Markov state models and validation by NMR relaxation studies has uncovered the involvement of loop L6 in the slowest motions of the protein. Due to its distant location from the DNA-binding surface, the conformational dynamics of this loop has so far remained largely unexplored. We observe mutation-induced stabilization of alternate L6 conformations, distinct from all experimentally-determined structures, in which the loop is both extended and located further away from the DNA-interacting surface. Additionally, the effect of the L6-adjacent Y220C mutation on the conformational landscape of the functionally-important loop L1 suggests an allosteric role to this dynamic loop and the inactivation mechanism of the mutation. Finally, the simulations reveal a novel Y220C cryptic pocket that can be targeted for p53 rescue efforts. Our approach exemplifies the power of the MSM methodology for uncovering intrinsic dynamic and kinetic differences among distinct protein ensembles, such as for the investigation of mutation effects on protein function.
The tumor suppressor p53 plays a vital role in responding to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Expression level alterations and mutational frequency implicates p53 in most human cancers. In this review, we show how both computational and experimental methods have been used to provide an integrated view of p53 dynamics, function, and reactivation potential. We argue that p53 serves as an exceptional case study for developing methods in modeling intrinsically disordered proteins. We describe how these methods can be leveraged to improve p53 reactivation molecule design and other novel therapeutic modalities, such as PROteolysis TARgeting Chimeras (PROTACs).
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 28,000,000 infections and 900,000 deaths worldwide to date. Antibody development efforts mainly revolve around the extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2). Similar to many other viral fusion proteins, the SARS-CoV-2 spike utilizes a glycan shield to thwart the host immune response. Here, we built a full-length model of the glycosylated SARS-CoV-2 S protein, both in the open and closed states, augmenting the available structural and biological data. Multiple microsecond-long, all-atom molecular dynamics simulations were used to provide an atomistic perspective on the roles of glycans and on the protein structure and dynamics. We reveal an essential structural role of N-glycans at sites N165 and N234 in modulating the conformational dynamics of the spike's receptor binding domain (RBD), which is responsible for ACE2 recognition. This finding is corroborated by biolayer interferometry experiments, which show that deletion of these glycans through N165A and N234A mutations significantly reduces binding to ACE2 as a result of the RBD conformational shift toward the "down" state. Additionally, end-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of the SARS-CoV-2 S protein, which may be exploited in the therapeutic efforts targeting this molecular machine. Overall, this work presents hitherto unseen functional and structural insights into the SARS-CoV-2 S protein and its glycan coat, providing a strategy to control the conformational plasticity of the RBD that could be harnessed for vaccine development.
Collagen model peptides (CMPs), composed of proline–(2S,4R)-hydroxyproline–glycine (POG) repeat units, have been extensively used to study the structure and stability of triple-helical collagen─the dominant structural protein in mammals─at the molecular level. Despite the more than 50-year history of CMPs and numerous studies on the relationship between the composition of single-stranded CMPs and the thermal stability of the assembled triple helices, little attention has been paid to the effects arising from their terminal residues. Here, we show that frame-shifted CMPs, which share POG repeat units but terminate with P, O, or G, form triple helices with vastly different thermal stabilities. A melting temperature difference as high as 16 °C was found for triple helices from 20-mers Ac-OG[POG]6-NH2 and Ac-[POG]6PO-NH2, and triple helices of the constitutional isomers Ac-[POG]7-NH2 and Ac-[GPO]7-NH2 melt 10 °C apart. A combination of thermal denaturation, circular dichroism and NMR spectroscopic studies, and molecular dynamics simulations revealed that the stability differences originate from the propensity of the peptide termini to preorganize into a polyproline-II helical structure. Our results advise that care must be taken when designing peptide mimics of structural proteins, as subtle changes in the terminal residues can significantly affect their properties. Our findings also provide a general and straightforward tool for tuning the stability of CMPs for applications as synthetic materials and biological probes.
The COVID-19 pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine developments efforts are underway, many questions remain outstanding on the mechanism of SARS-CoV-2 viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and entry in the cell. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular Spike glycoprotein and at the receptor binding domain-receptor interface, suggesting a role in infection. Here, we perform all-atom molecular dynamics simulations of the glycosylated, full-length membrane-bound ACE2 receptor, in both an apo and spike receptor binding domain (RBD) bound state, in order to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix, while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer, and suggests a mechanical contribution of the host receptor towards the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can be exploited for the rational design of effective SARS-CoV-2 therapeutics. As the host receptor of SARS-CoV-2, ACE2 has been the subject of extensive structural and antibody design efforts in aims to curtail COVID-19 spread. Here, we perform molecular dynamics simulations of the homodimer ACE2 full-length structure to study the dynamics of this protein in the context of the cellular membrane. The simulations evidence exceptional plasticity in the protein structure due to flexible hinge motions in the head-transmembrane domain linker region and helix mobility in the membrane, resulting in a varied ensemble of conformations distinct from the experimental structures. Our findings suggest a dynamical contribution of ACE2 to the spike glycoprotein shedding required for infection, and contribute to the question of stoichiometry of the Spike-ACE2 complex.