The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays through excursions from, and breaks in, the expected $f_{\mathrm{GW}}^{-2/3}$ power-law of the GWB strain spectrum. To do this, we create a semi-analytic SMBHB population model, fit to NANOGrav's 15 yr GWB amplitude, and with 1,000 realizations we study the populations' characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power-law. The first, at $2 \; \mathrm{nHz}$, is below our GWB realizations with $p$-value significance $p = 0.05$ to $0.06$ ($\approx 1.8 \sigma - 1.9 \sigma$). The second, at $16 \; \mathrm{nHz}$, is above our GWB realizations with $p = 0.04$ to $0.15$ ($\approx 1.4 \sigma - 2.1 \sigma$). We explore the properties of a loud SMBHB which could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by three orders of magnitude, from $\sim 10^6$ to $\sim 10^3$, between $2\; \mathrm{nHz}$ and $20 \; \mathrm{nHz}$. This causes a break in the strain spectrum as the stochasticity of the background breaks down at $26^{+28}_{-19} \; \mathrm{nHz}$, consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the $26$~nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early universe.
We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350 MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed RRATtrap, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array, yielding improved positions and measurements of their periods, dispersion measures (DMs), and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have DMs ranging from 15 to 97 , periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr−1 at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e., ms) are preferentially more likely to emit bright single pulses than are faster pulsars ( ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.
We present timing solutions for 12 pulsars discovered in the Green Bank North Celestial Cap (GBNCC) 350 MHz pulsar survey, including six millisecond pulsars (MSPs), a double neutron star (DNS) system, and a pulsar orbiting a massive white dwarf companion. Timing solutions presented here include 350 and 820 MHz Green Bank Telescope data from initial confirmation and follow-up as well as a dedicated timing campaign spanning one year. PSR J1122$-$3546 is an isolated MSP, PSRs J1221$-$0633 and J1317$-$0157 are MSPs in black widow systems and regularly exhibit eclipses, and PSRs J2022+2534 and J2039$-$3616 are MSPs that can be timed with high precision and have been included in pulsar timing array experiments seeking to detect low-frequency gravitational waves. PSRs J1221$-$0633 and J2039$-$3616 have Fermi Large Area Telescope $γ$-ray counterparts and also exhibit significant $γ$-ray pulsations. We measure proper motion for three of the MSPs in this sample and estimate their space velocities, which are typical compared to those of other MSPs. We have detected the advance of periastron for PSR J1018$-$1523 and therefore measure the total mass of the double neutron star system, $m_{\rm tot}=2.3\pm0.3$ M$_{\odot}$. Long-term pulsar timing with data spanning more than one year is critical for classifying recycled pulsars, carrying out detailed astrometry studies, and shedding light on the wealth of information in these systems post-discovery.
Abstract Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.
The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and a minimum companion mass of 0.16 M☉, it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the γ-ray counterpart to this pulsar and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris, we detect pulsations in the unclassified γ-ray source 2FGL J1816.5+4511, implying an efficiency of ∼25% in converting the pulsar's spin-down luminosity into γ-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<01) and unusual colors. Assuming that it is the companion, with R = 18.27 ± 0.03 mag and effective temperature ≳ 15,000 K, it would be among the brightest and hottest of low-mass pulsar companions and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.
Supermassive black hole binaries (SMBHBs) should form frequently in galactic nuclei as a result of galaxy mergers. At sub-parsec separations, binaries become strong sources of low-frequency gravitational waves (GWs), targeted by Pulsar Timing Arrays (PTAs). We used recent upper limits on continuous GWs from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11yr dataset to place constraints on putative SMBHBs in nearby massive galaxies. We compiled a comprehensive catalog of ~44,000 galaxies in the local universe (up to redshift ~0.05) and populated them with hypothetical binaries, assuming that the total mass of the binary is equal to the SMBH mass derived from global scaling relations. Assuming circular equal-mass binaries emitting at NANOGrav's most sensitive frequency of 8nHz, we found that 216 galaxies are within NANOGrav's sensitivity volume. We ranked the potential SMBHBs based on GW detectability by calculating the total signal-to-noise ratio (S/N) such binaries would induce within the NANOGrav array. We placed constraints on the chirp mass and mass ratio of the 216 hypothetical binaries. For 19 galaxies, only very unequal-mass binaries are allowed, with the mass of the secondary less than 10 percent that of the primary, roughly comparable to constraints on a SMBHB in the Milky Way. Additionally, we were able to exclude binaries delivered by major mergers (mass ratio of at least 1/4) for several of these galaxies. We also derived the first limit on the density of binaries delivered by major mergers purely based on GW data.
Abstract Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these data sets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15 yr data set. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings–Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems. At our most sensitive frequency of 6 nHz, we place a sky-averaged 95% upper limit of 8 × 10 −15 on the strain amplitude. We also calculate an exclusion volume and a corresponding effective radius, within which we can rule out the presence of black hole binaries emitting at a given frequency.
We present the DSA-2000: a world-leading radio survey telescope and multi-messenger discovery engine for the next decade. The array will be the first true radio camera, outputting science-ready image data over the 0.7 - 2 GHz frequency range with a spatial resolution of 3.5 arcsec. With 2000 x 5 m dishes, the DSA-2000 will have an equivalent point-source sensitivity to SKA1-mid, but with ten times the survey speed. The DSA-2000 is envisaged as an all-sky survey instrument complementary to the ngVLA, and as a counterpart to the LSST (optical), SPHEREx (near-infrared) and SRG/eROSITA (X-ray) all-sky surveys. Over a five-year prime phase, the DSA-2000 will image the entire sky above declination -30 degrees every four months, detecting > 1 unique billion radio sources in a combined full-Stokes sky map with 500 nJy/beam rms noise. This all-sky survey will be complemented by intermediate and deep surveys, as well as spectral and polarization image cubes. The array will be a cornerstone for multi-messenger science, serving as the principal instrument for the US pulsar timing array community, and by searching for radio afterglows of compact object mergers detected by LIGO and Virgo. The array will simultaneously detect and localize ~10,000 fast radio bursts each year, realizing their ultimate use as a cosmological tool. The DSA-2000 will be proposed to the NSF Mid-Scale Research Infrastructure-2 program with a view to first light in 2026
The on-going PALFA survey at the Arecibo Observatory began in 2004 and is searching for radio pulsars in the Galactic plane at 1.4 GHz. Observations since 2009 have been made with new wider-bandwidth spectrometers than were previously employed in this survey. A new data reduction pipeline has been in place since mid-2011 which consists of standard methods using dedispersion, searches for accelerated periodic sources, and search for single pulses, as well as new interference-excision strategies and candidate selection heuristics. This pipeline has been used to discover 41 pulsars, including 8 millisecond pulsars (MSPs; P < 10 ms), bringing the PALFA survey's discovery totals to 145 pulsars, including 17 MSPs, and one Fast Radio Burst (FRB). The pipeline presented here has also re-detected 188 previously known pulsars including 60 found in PALFA data by re-analyzing observations previously searched by other pipelines. A comprehensive description of the survey sensitivity, including the effect of interference and red noise, has been determined using synthetic pulsar signals with various parameters and amplitudes injected into real survey observations and subsequently recovered with the data reduction pipeline. We have confirmed that the PALFA survey achieves the sensitivity to MSPs predicted by theoretical models. However, we also find that compared to theoretical survey sensitivity models commonly used there is a degradation in sensitivity to pulsars with periods P >= 100 ms that gradually becomes up to a factor of ~10 worse for P > 4 s at DM < 150 pc/cc. This degradation of sensitivity at long periods is largely due to red noise. We find that 35 +- 3% of pulsars are missed despite being bright enough to be detected in the absence of red noise. This reduced sensitivity could have implications on estimates of the number of long-period pulsars in the Galaxy.