The AX version of the visual continuous performance task (AX-CPT) is widely used for investigating visual working memory dysfunction in schizophrenia. Event-related potentials (ERP) provide an objective index of brain function and can be used to evaluate brain substrates underlying impaired cognition in schizophrenia.To assess the mechanisms that underlie visual working memory dysfunction in schizophrenia relative to impairment of early visual processing.Case-control study.Inpatient and outpatient facilities associated with the Nathan Kline Institute for Psychiatric Research.A total of 30 individuals with schizophrenia and 17 healthy comparison subjects.Three versions of the AX-CPT, with parametric variations in the proportions of trial types, were used to test performance and underlying neural activity during differential challenge situations. Contrast sensitivity measures were obtained from most subjects.Behavioral performance was assessed using d' context scores. Integrity of stimulus- and task-related cortical activation to both cue and probe stimuli was assessed using sensory (C1, P1, N1) and cognitive (N2, contingent negative variation [CNV]) ERP components. Early magnocellular/parvocellular function was assessed using contrast sensitivity. Linear regression and path analyses were used to assess relations between physiological and behavioral parameters.Patients showed reduced amplitude of both early sensory (P1, N1) and later cognitive (N2, CNV) ERP components. Deficits in sensory (N1) and cognitive (N2) component activation to cue stimuli contributed independently to impaired behavioral performance. In addition, sensory deficits predicted impaired cognitive ERP generation. Finally, deficits in performance correlated with impairments in contrast sensitivity to low, but not high, spatial frequency stimuli.Working memory deficits in schizophrenia have increasingly been attributed to impairments in stimulus encoding rather than to failures in memory retention. This study provides objective physiological support for encoding hypotheses. Further, deficits in sensory processing contribute significantly to impaired working memory performance, consistent with generalized neurochemical models of schizophrenia.
Deficits in mismatch negativity (MMN) generation are among the best-established biomarkers for cognitive dysfunction in schizophrenia and predict conversion to schizophrenia (Sz) among individuals at symptomatic clinical high risk (CHR). Impairments in MMN index dysfunction at both subcortical and cortical components of the early auditory system. To date, the large majority of studies have been conducted using deviants that differ from preceding standards in either tonal frequency (pitch) or duration. By contrast, MMN to sound location deviation has been studied to only a limited degree in Sz and has not previously been examined in CHR populations. Here, we evaluated location MMN across Sz and CHR using an optimized, multi-deviant pattern that included a location-deviant, as defined using interaural time delay (ITD) stimuli along with pitch, duration, frequency modulation (FM) and intensity deviants in a sample of 42 Sz, 33 CHR and 28 healthy control (HC) subjects. In addition, we obtained resting state functional connectivity (rsfMRI) on CHR subjects. Sz showed impaired MMN performance across all deviant types, along with strong correlation between MMN deficits and impaired neurocognitive function. In this sample of largely non-converting CHR subjects, no deficits were observed in either pitch or duration MMN. By contrast, CHR subjects showed significant impairments in location MMN generation particularly over right hemisphere and significant correlation between impaired location MMN and negative symptoms including deterioration of role function. In addition, significant correlations were observed between location MMN and rsfMRI involving brainstem circuits. In general, location detection using ITD stimuli depends upon precise processing within midbrain regions and provides a rapid and robust reorientation of attention. Present findings reinforce the utility of MMN as a pre-attentive index of auditory cognitive dysfunction in Sz and suggest that location MMN may index brain circuits distinct from those indexed by other deviant types.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p<.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p<.0001) and fMRI connectivity (p<.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.
Contact: miriam.spering@ubc.ca • Schizophrenia patients show lower pursuit gain than controls and no perceptual performance advantage during pursuit; consistent with impaired motion processing and reduced MT activity Butler & Javitt, 2005; Kim et al., 2005; 2006 • Impaired sensory input to frontal pursuit areas (FEF/SEF) could explain deficits in using extraretinal motion information • Patients have higher eye position errors in trials with perceptual error, indicating an inability to compensate for sensory consequences of eye movements Conclusions Smooth eye velocity Saccades
We report on the rationale and design of an ongoing NIMH sponsored R61-R33 project in schizophrenia/schizoaffective disorder. This project studies augmenting the efficacy of auditory neuroplasticity cognitive remediation (AudRem) with d-serine, an N-methyl-d-aspartate-type glutamate receptor (NMDAR) glycine-site agonist. We operationalize improved (smaller) thresholds in pitch (frequency) between successive auditory stimuli after AudRem as improved plasticity, and mismatch negativity (MMN) and auditory θ as measures of functional target engagement of both NMDAR agonism and plasticity. Previous studies showed that AudRem alone produces significant, but small cognitive improvements, while d-serine alone improves symptoms and MMN. However, the strongest results for plasticity outcomes (improved pitch thresholds, auditory MMN and θ) were found when combining d-serine and AudRem. AudRem improvements correlated with reading and other auditory cognitive tasks, suggesting plasticity improvements are predictive of functionally relevant outcomes. While d-serine appears to be efficacious for acute AudRem enhancement, the optimal dose remains an open question, as does the ability of combined d-serine + AudRem to produce sustained improvement. In the ongoing R61, 45 schizophrenia patients will be randomized to receive three placebo-controlled, double-blind d-serine + AudRem sessions across three separate 15 subject dose cohorts (80/100/120 mg/kg). Successful completion of the R61 is defined by ≥moderate effect size changes in target engagement and correlation with function, without safety issues. During the three-year R33, we will assess the sustained effects of d-serine + AudRem. In addition to testing a potentially viable treatment, this project will develop a methodology to assess the efficacy of novel NMDAR modulators, using d-serine as a "gold-standard".