ABSTRACT. Large miliolid foraminifers of the subfamily Soritinae bear symbiotic dinoflagellates morphologically similar to the species of the “ Symbiodinium ” complex, commonly found in corals and other marine invertebrates. Soritid foraminifers are abundant in coral reefs and it has been proposed that they share their symbionts with other dinoflagellate‐bearing reef dwellers. In order to test this hypothesis, we have analysed partial large subunit ribosomal DNA sequences from dinoflagellates symbionts obtained from 28 foraminiferal specimens, and compared them to the corresponding sequences of Symbiodinium ‐like endosymbionts from various groups of invertebrates. Phylogenetic analysis of our data shows that all soritid symbionts belong to the “ Symbiodinium ” species complex, within which they form seven different molecular types (Fr1–Fr7). Only one of these types (Fr1) branches within a group of invertebrate symbionts, previously described as type C. The remaining six types form sister groups to coral symbionts previously designed as types B, C, and D. Our data indicate a high genetic diversity and specificity of Symbiodinium ‐like symbionts in soritids. Except for type C, we have found no evidence for the transmission of symbionts between foraminifers and other symbiont‐bearing invertebrates from the same localities. However, exchanges must have occurred frequently between the different species of Soritinae, as suggested by the lack of host specificity and some biogeographical patterns observed in symbiont distribution. Our data suggest that members of the subfamily Soritinae acquired their symbionts at least three times during their history, each acquisition being followed by a rapid diversification and independent radiation of symbionts within the foraminiferal hosts.
Abstract Environmental DNA (eDNA) metabarcoding has shown great promise as an effective, non‐invasive monitoring method for marine biomes. However, long filtration times and the need for state‐of‐the‐art laboratories are restricting sample replication and in situ species detections. Methodological innovations, such as passive filtration and self‐contained DNA extraction protocols, have the potential to alleviate these issues. We explored the implementation of passive sampling and a self‐contained DNA extraction protocol by comparing fish diversity obtained from active filtration (1 L; 0.45 μm cellulose nitrate [CN] filters) to five passive substrates, including 0.45 μm CN filters, 5 μm nylon filters, 0.45 μm positively charged nylon filters, artificial sponges, and fishing net. Fish diversity was then compared between the PDQeX Nucleic Acid Extractor and the conventional Qiagen DNeasy Blood & Tissue protocol. Experiments were conducted in both a controlled mesocosm and in situ at the Portobello Marine Laboratory, New Zealand. No significant differences in fish diversity were observed among active filtration and more porous passive materials (artificial sponges and fishing net) for both the mesocosm and harbor waters. For the in situ comparison, all passive filter membranes detected a significantly lower number of fish species, resulting from partial sample drop‐out. While no significant differences in fish eDNA signal diversity were observed between either DNA extraction methods in the mesocosm, the PDQeX system was less effective at detecting fish for the in situ comparison. Our results demonstrate that a passive sampling approach using porous substrates can be effectively implemented to capture eDNA from seawater, eliminating vacuum filtration processing. The large variation in efficiency observed among the five substrate types, however, warrants further optimization of the passive sampling approach for routine eDNA applications. The PDQeX system can extract high‐abundance DNA in a mesocosm with further optimization to detect low‐abundance eDNA from the marine environment.
Abstract Molecular tools of species identification based on eNAs (environmental nucleic acids; environmental DNA [eDNA] and environmental RNA [eRNA]) have the potential to greatly transform biodiversity science. However, the ability of eNAs to obtain “real‐time” biodiversity estimates may be complicated by the differential persistence and degradation dynamics of the molecular template (eDNA or eRNA) and the barcode marker used. Here, we collected water samples over a 28‐day period to comparatively assess species detection using eDNA and eRNA metabarcoding of two distinct barcode markers—a mitochondrial mRNA marker (COI) and a nuclear rRNA marker (18S)—following complete removal of Arthropoda taxa in a semi‐natural freshwater system. Our findings demonstrate that Arthropoda community composition was largely influenced by marker choice, rather than molecular template, individual microcosm, or sampling time point. Furthermore, although eRNA may capture similar species diversity as the established eDNA method, this finding may be marker‐dependent. Although we found little to no difference in decay rates observed among sample groups (COI eDNA, COI eRNA, 18S eDNA, 18S eRNA), this result is likely due to limitations in the ability of eNA‐based metabarcoding to provide a strong correlation between true eNA copy numbers present in the environment and final read counts obtained (following the metabarcoding workflow). Collectively, our findings provide further support for the use of multi‐marker assessments in metabarcoding surveys to unravel the broadest taxonomic diversity possible, highlight the limitations of eNA metabarcoding methods in providing accurate decay rate estimates, as well as establish the need for further comparative studies using both metabarcoding and single‐species detection methods to assess the persistence and degradation dynamics of eNAs for a diverse range of taxa.
The invasive Mediterranean fanworm Sabella spallanzanii (Gmelin, 1791) is a notifiable organism under New Zealand’s Biosecurity Act and is recognized as a marine pest of particular concern, that must be reported to the Ministry for Primary Industries (MPI), New Zealand. Since its first detection in 2008, great effort and financial resources are put into surveillance and removal of individuals to contain population growth and spread. Sensitive molecular detection techniques gain great interest and are being increasingly tested for the fanworm detection in marine high-risk sites (i.e., ports and marinas) around New Zealand. However, conventional molecular detection via PCR assays from environmental DNA (eDNA) samples requires specific laboratory resources and technical expertise. This restricts the wider applicability of this approach by biosecurity practitioners or communities willing to be engaged in biosecurity surveillance. To provide end-users with a fast, easy and highly specific way to detect S. spallanzanii directly at the site of interest, a species-specific recombinase polymerase amplification (RPA) assay was designed to be read-out with lateral flow strips (RPA-LF). The RPA generates amplification within 20 minutes at 37-39°C, with a detection limit of 10 pg of the target DNA and was matching the detection limit of digital droplet PCR (ddPCR) when performed on eDNA samples. A simplified visual protocol for non-scientist users of the assay was developed and improved through independent trials with different end-user groups. The assay applicability was verified in a final validation trial with participants without scientific background resulting in 50 percent of the participants successfully detecting S. spallanzanii . Participants rated the ease of use and performance and read-out mostly as easy-to-very easy with overall positive written feedback on its usability for citizen science applications.
The Pacific oyster Crassostrea gigas is the world's most cultivated oyster and seed supply is heavily reliant on hatchery production where recurring mass mortality events are a major constraint. Outbreaks of bacterial infection via microalgal feed are frequently implicated in these mortalities. This study assessed the effects of feeding compromised microalgae to developing oyster larvae. Intentionally 'stressed' (high pH) or non-stressed microalgae were fed to 11 day-old oyster larvae at two feeding rations for 96 h, followed by a recovery period. Biological endpoints of larval performance were measured following the 96 h exposure and subsequent recovery. Bacterial communities associated with the microalgae feed, rearing seawater, and the oyster larvae, were characterized and correlated with effects on oyster fitness parameters. Feeding stressed algae to oyster larvae for 96 h increased the occurrence of deformities (>70% vs. 20% in control), reduced feeding and swimming ability, and slowed development. Following the recovery period, fewer larvae reached pediveliger stage (2.7% vs. 36% in control) and became spat (1.5% vs. 6.6% in control). The quantity of stressed algae supplied to oyster larvae also influenced overall larval performance, with high feeding rations generally causing greater impairment than low rations. Bacterial profiling using 16S rRNA showed that most bacterial families characterized in larval tissue were also present in larval rearing seawater and in the microalgae feed (98%). The rearing seawater showed the highest bacterial richness compared to the larval and the microalgal compartments, regardless of feeding regime. In larval tissue, bacterial richness was highest in stressed and high-feed treatments, and negatively correlated with larval fitness parameters. These results suggest significant dysbiosis induced by compromised feed and/or increased feed ration. Several bacterial genera (e.g., Halomonas, Marinomonas) were strongly associated with impaired larval performance while the presence of genera in larvae including Vibrio was closely associated with overfeeding. Our research demonstrated that metabarcoding can be effectively used to identify microbiota features associated with larval fitness.
Crustose Coralline Algae (CCA) play a crucial role in coral reef ecosystems, contributing significantly to reef formation and serving as substrates for coral recruitment. The microbiome associated with CCAs may promote coral recruitment, yet these microbial communities remain largely understudied. This study investigates the microbial communities associated with a large number of different CCA species across six different islands of French Polynesia, and assess their potential influence on the microbiome of coral recruits. Our findings reveal that CCA harbor a large diversity of bacteria that had not been reported until now. The composition of these microbial communities was influenced by geographic location, and was also closely linked to the host species, identified at a fine taxonomic unit using the 16S rRNA gene of the CCA chloroplast. We demonstrate the usefulness of these ecologically meaningful units that we call CCA chlorotypes. Additionally, we observed a correlation between host phylogeny and microbiome composition (phylosymbiosis) in two CCA species. Contrary to expectations, the CCA microbiome did not act as a microbial reservoir for coral recruits. However, the microbial community of coral recruits varied according to the substrate on which they grew. The study significantly expands the number of characterized CCA microbiomes, and provides new insight into the extensive diversity of these microbial communities. We show distinct microbiomes between and within CCA species, characterized by specific chloroplast 16S rRNA gene sequences. We term these distinct groups "chlorotypes", and demonstrate their utility to differentiate CCA. We also show that only few bacterial taxa were shared between CCA and coral recruits growing in contact with them. Nevertheless, we observed that the microbial community of coral recruits varied depending on the substrate they grew on. We conclude that CCA and their associated bacteria influence the microbiome composition of the coral recruits.
The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past.
Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral– Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium , thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.
Abstract The dinoflagellate family Symbiodiniaceae comprises numerous divergent genera containing species whose ecologies range from endosymbiotic to free‐living. While many associate with invertebrates including corals, sea anemones, jellyfish, giant clams, and flatworms, others occur within the cytoplasm of large protists, most notably benthic foraminifera in the sub‐family Soritinae. Recent systematic revisions to the Symbiodiniaceae left out formal naming of some divergent lineages because each lacked a representative type species to erect new genus names. Here we provide genetic, morphological and ecological evidence to describe a new genus and species. Miliolidium n. gen. is closely related to the genus Durusdinium and contains several genetically divergent ecologically distinct lineages found in distant geographic locations indicating an Indo‐Pacific wide distribution. One of these, Miliolidium leei n. sp., is represented by an isolate cultured from Amphisorus sp. originally collected in the Gulf of Eilat, northern Red Sea. Its peripheral chloroplast extensions are uniquely petal‐ or lobe‐shaped, and cells possess a pyrenoid with three stalks connecting to chloroplasts, and without thylakoid intrusions. It is related to an isolate cultured from an azooxanthellate sponge from Palau and another that is commonly harbored by the soritid Marginopora vertebralis in shallow reef habitats from Guam. Research on Symbiodiniaceae diversity including free‐living species in benthic habitats and those mutualistic with soritid foraminifera remains extremely limited as does our knowledge of their diversity, physiology, biogeography, and ecology.