Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.
Deleterious mutations in RS1 encoding retinoschisin are associated with X-linked juvenile retinoschisis (RS), a common form of macular degeneration in males. The disorder is characterized by a negative electroretinogram pattern and by a splitting of the inner retina. To gain further insight into the function of the retinoschisin protein and its role in the cellular pathology of RS, we have generated knockout mice deficient in Rs1h , the murine ortholog of the human RS1 gene. We show that pathologic changes in hemizygous Rs1h −/Y male mice are evenly distributed across the retina, apparently contrasting with the macula-dominated features in human. Similar functional anomalies in human and Rs1h −/Y mice, however, suggest that both conditions are a disease of the entire retina affecting the organization of the retinal cell layers as well as structural properties of the retinal synapse.
Guanylate cyclases, GC1 and GC2, are localized in the light-sensitive outer segment compartment of photoreceptor cells, where they play a crucial role in phototransduction by catalyzing the synthesis of cGMP, the second messenger of phototransduction, and regulating intracellular Ca(2+) levels in combination with the cGMP-gated channel. Mutations in GC1 are known to cause Leber congenital amaurosis type 1 (LCA1), a childhood disease associated with severe vision loss. Although the enzymatic and regulatory properties of guanylate cyclases have been studied extensively, the molecular determinants responsible for their trafficking in photoreceptors remain unknown. Here we show that RD3, a protein of unknown function encoded by a gene associated with photoreceptor degeneration in humans with Leber congenital amaurosis type 12 (LCA12), the rd3 mouse, and rcd2 collie, colocalizes and interacts with GC1 and GC2 in rod and cone photoreceptor cells of normal mice. GC1 and GC2 are undetectable in photoreceptors of the rd3 mouse deficient in RD3 by immunofluorescence microscopy. Cell expression studies show that RD3 mediates the export of GC1 from the endoplasmic reticulum to endosomal vesicles, and that the C terminus of GC1 is required for RD3 binding. Our results indicate that photoreceptor degeneration in the rd3 mouse, rcd2 dog, and LCA12 patients is caused by impaired RD3-mediated guanylate cyclase expression and trafficking. The resulting deficiency in cGMP synthesis and the constitutive closure of cGMP-gated channels might cause a reduction in intracellular Ca(2+) to a level below that required for long-term photoreceptor cell survival.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.
Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.
Stargardt macular degeneration (Stargardt disease 1 [STGD1]) is caused by mutations in the gene encoding ABCA4, an ATP-binding cassette protein that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across photoreceptor membranes. Reduced ABCA4 activity results in retinoid accumulation leading to photoreceptor degeneration. The disease onset and severity vary from severe loss in visual acuity in the first decade to mild visual impairment late in life. We determined the effect of 22 disease-causing missense mutations on the expression and ATPase activity of ABCA4 in the absence and presence of N-Ret-PE. Three classes were identified that correlated with the disease onset in homozygous STGD1 individuals: Class 1 exhibited reduced ABCA4 expression and ATPase activity that was not stimulated by N-Ret-PE; individuals homozygous for these variants had an early disease onset (≤13 years); Class 2 showed reduced ATPase activity with limited stimulation by N-Ret-PE; these correlated with moderate disease onset (14–40 years); and Class 3 displayed high expression and ATPase activity that was strongly activated by N-Ret-PE; these were associated with late disease onset (>40 years). On the basis of our results, we introduce a functionality index for gauging the effect of missense mutations on STGD1 severity. Our studies support the mild phenotype exhibited by the p.Gly863Ala, p.Asn1868Ile, and p.Gly863Ala/p.Asn1868Ile variants.