We study problems of federated control in Markov Decision Processes. To solve an MDP with large state space, multiple learning agents are introduced to collaboratively learn its optimal policy without communication of locally collected experience. In our settings, these agents have limited capabilities, which means they are restricted within different regions of the overall state space during the training process. In face of the difference among restricted regions, we firstly introduce concepts of leakage probabilities to understand how such heterogeneity affects the learning process, and then propose a novel communication protocol that we call Federated-Q protocol (FedQ), which periodically aggregates agents' knowledge of their restricted regions and accordingly modifies their learning problems for further training. In terms of theoretical analysis, we justify the correctness of FedQ as a communication protocol, then give a general result on sample complexity of derived algorithms FedQ-X with the RL oracle , and finally conduct a thorough study on the sample complexity of FedQ-SynQ. Specifically, FedQ-X has been shown to enjoy linear speedup in terms of sample complexity when workload is uniformly distributed among agents. Moreover, we carry out experiments in various environments to justify the efficiency of our methods.
We present a study of Nernst and Seebeck coefficients in the heavy-fermion compound URu$_{2}$Si$_{2}$, which hosts a phase transition of unsettled origin. A giant Nernst signal of unprecedented magnitude was found to emerge in the ordered state. Moreover, our analysis of the Seebeck and Hall data indicates that the ordering leads to a sudden increase in the entropy per itinerant electron and to a drastic decrease in the scattering rate.
In this paper, H introduction into low pressure chemical vapor deposited silicon nitride (LPCVD SiN) films using molecular and atomic hydrogen is discussed and compared. Infra-red Multiple Internal Reflection (MIR) measurements were taken to analyse the hydrogen bond content in the nitride films. Quasi-steady state photoconductivity decay (QSSPCD) measurements on phosphorus diffused samples were used to determine the effective lifetime and the emitter saturation current J oe . Long process times and high temperatures are required for molecular hydrogen introduction whereas shorter times and low temperatures are sufficient for atomic hydrogen introduction. Hydrogen introduced into the nitride layer in this way can passivate the Si-SiO 2 interface of oxide/nitride stacks on silicon. An annealing following atomic H re-introduction at elevated temperatures in N 2 further improves the properties of the Si-SiO 2 interface
Stable and reliable electrical properties of interconnects and interfaces between flexible/stretchable and rigid materials/components are essential for the practical applications of flexible electronic devices and systems; traditional metal thin films and hard solder interconnects and interfaces can no longer meet these requirements. As an emerging soft conductive material, liquid metal has the advantages of high stretchability, flexibility, etc. over other soldering materials, and it has been used in interconnects and interfaces for some flexible electronics. In this study, we report a detailed investigation on the reliability and stability of liquid metal-based interconnects/interfaces under various mechanical deformations, including extension, bending, torsion, high frequency vibration and high temperature operation; we also compared the results with those of interconnects and interfaces using silver paste, the most commonly used solder for flexible electronics. The results show that liquid metal interconnects and interfaces maintain high conductivity under severe elongation up to 95% and 130%, upon bending with a curvature radius as low as ∼1.5 mm, and upon twisting up to 360°; meanwhile, interconnects and interfaces with silver paste filler lose electrical conductivity at elongations of 0.6% and 60%, respectively. Liquid metal interconnects and interfaces show superior performance to silver paste interconnects and interfaces because liquid metal can be re-shaped to make good contact with objects, while the silver paste becomes solid and rigid once dried and thus loses contact with other objects under deformation.