Osteoarthritis (OA) is the most common degenerative joint disorder and genetic factors have been shown to have a significant role in its etiology. The first metatarsophalangeal joint (MTP I) is highly susceptible to development of OA due to repetitive mechanical stress during walking. We used whole exome sequencing to study genetic defect(s) predisposing to familial early-onset bilateral MTP I OA inherited in an autosomal dominant manner. A nonsynonymous single nucleotide variant rs41310883 (c.524C>T, p.Thr175Met) in TUFT1 gene was found to co-segregate perfectly with MTP I OA. The role of TUFT1 and the relevance of the identified variant in pathogenesis of MTP I OA were further assessed using functional in vitro analyses. The variant reduced TUFT1 mRNA and tuftelin protein expression in HEK293 cells. ATDC5 cells overexpressing wild type (wt) or mutant TUFT1 were cultured in calcifying conditions and chondrogenic differentiation was found to be inhibited in both cell populations, as indicated by decreased marker gene expression when compared with the empty vector control cells. Also, the formation of cartilage nodules was diminished in both TUFT1 overexpressing ATDC5 cell populations. At the end of the culturing period the calcium content of the extracellular matrix was significantly increased in cells overexpressing mutant TUFT1 compared to cells overexpressing wt TUFT1 and control cells, while the proteoglycan content was reduced. These data imply that overexpression of TUFT1 in ATDC5 inhibits chondrogenic differentiation, and the identified variant may contribute to the pathogenesis of OA by increasing calcification and reducing amount of proteoglycans in the articular cartilage extracellular matrix thus making cartilage susceptible for degeneration and osteophyte formation.
ABSTRACTObjectives: To investigate the protein expression of the epithelial-mesenchymal transition-inducing transcription factors (TFs) Twist, ZEB1 and Slug in peripheral T-cell lymphomas (PTCL) and their correlation with clinical parameters.Methods: The expression of these TFs was studied in 53 diagnostic biopsy specimens of several different PTCL subtypes with immunohistochemistry. Patient data were retrospectively collected from patient records and a statistical analysis was performed.Results: All three TFs were widely expressed. ZEB1 and Slug had correlations with clinical outcome. In all PTCL cases, high nuclear ZEB1 percentage correlated with a favorable progression-free survival (PFS) (3-year PFS: 70% vs. 34%; P = 0.010) and strong nuclear Slug intensity correlated with an unfavorable PFS (3-year PFS: 17% vs. 62%; P = 0.036).Discussion: The correlations between PFS and ZEB1 or Slug protein expression have not previously been established in PTCLs. The impact of ZEB1 and Slug expression on prognosis differed from our findings in DLBCL and the impact of ZEB1 expression was in line with current studies on mycosis fungoides and sézary syndrome. The findings may be explained by the roles these TFs play in hematopoiesis.Conclusion: ZEB1 and Slug may have potential clinical value for evaluating prognosis in PTCLs. The study size was small and heterogenous, and larger studies are warranted.
Abstract Endometriosis is a common complex inflammatory condition characterised by the presence of endometrium-like tissue outside the uterus, mainly in the pelvic area. It is associated with chronic pelvic pain and infertility, and its pathogenesis remains poorly understood. The disease is typically classified according to the revised American Fertility Society (rAFS) 4-stage surgical assessment system, although stage does not correlate well with symptomatology or prognosis. Previously identified genetic variants mainly are associated with stage III/IV disease, highlighting the need for further phenotype-stratified analysis that requires larger datasets. We conducted a meta-analysis of 15 genome-wide association studies (GWAS) and a replication analysis, including 58,115 cases and 733,480 controls in total, and sub-phenotype analyses of stage I/II, stage III/IV and infertility-associated endometriosis cases. This revealed 27 genetic loci associated with endometriosis at the genome-wide p-value threshold (P<5×10 −8 ), 13 of which are novel and an additional 8 novel genes identified from gene-based association analyses. Of the 27 loci, 21 (78%) had greater effect sizes in stage III/IV disease compared to stage I/II, 1 (4%) had greater effect size in stage I/II compared to stage III/IV and 17 (63%) had greater effect sizes when restricted to infertility-associated endometriosis cases compared to overall endometriosis. These results suggest that specific variants may confer risk for different sub-types of endometriosis through distinct pathways. Analyses of genetic variants underlying different pain symptoms reported in the UK Biobank showed that 7/9 had positive significant (p<1.28×10 3 ) positive genetic correlations with endometriosis, suggesting a genetic basis for sensitivity to pain in general. Additional conditions with significant positive genetic correlations with endometriosis included uterine fibroids, excessive and irregular menstrual bleeding, osteoarthritis, diabetes as well as menstrual cycle length and age at menarche. These results provide a basis for fine-mapping of the causal variants at these 27 loci, and for functional follow-up to understand their contribution to endometriosis and its potential subtypes.
The objective was to study the genetic etiology of Ménière’s disease (MD) using next-generation sequencing in three families with three cases of MD. Whole exome sequencing was used to identify rare genetic variants co-segregating with MD in Finnish families. In silico estimations and population databases were used to estimate the frequency and pathogenicity of the variants. Variants were validated and genotyped from additional family members using capillary sequencing. A geneMANIA analysis was conducted to investigate the functional pathways and protein interactions of candidate genes. Seven rare variants were identified to co-segregate with MD in the three families: one variant in the CYP2B6 gene in family I, one variant in GUSB and EPB42 in family II, and one variant in each of the SLC6A, ASPM, KNTC1, and OVCH1 genes in family III. Four of these genes were linked to the same co-expression network with previous familial MD candidate genes. Dysfunction of CYP2B6 and SLC6A could predispose to MD via the oxidative stress pathway. Identification of ASPM and KNTC1 as candidate genes for MD suggests dysregulation of mitotic spindle formation in familial MD. The genetic etiology of familial MD is heterogenic. Our findings suggest a role for genes acting on oxidative stress and mitotic spindle formation in MD but also highlight the genetic complexity of MD.
Abstract Background Sepsis can lead to myocardial depression, playing a significant role in sepsis pathophysiology, clinical care, and outcome. To gain more insight into the pathophysiology of the myocardial response in sepsis, we investigated the expression of microRNA in myocardial autopsy specimens in critically ill deceased with sepsis and non-septic controls. Materials and methods In this retrospective observational study, we obtained myocardial tissue samples collected during autopsy from adult patients deceased with sepsis (n = 15) for routine histological examination. We obtained control myocardial tissue specimens (n = 15) from medicolegal autopsies of cadavers whose cause of death was injury or who were found dead at home and the cause of death was coronary artery disease with sudden cardiac arrest. RNA was isolated from formalin-fixed paraffin- embedded (FFPE) cardiac samples using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen). Differentially expressed miRNAs were identified using edgeR v3.32. MicroRNA was considered up- or down-regulated if the false discovery rate was < 0.05 and logarithmic fold change (log2FC) ≥ 1 for up-regulated or log2FC ≤ -1 for down-regulated miRNAs. The mean difference and 95% confidence interval (CI) was calculated for normalized read counts. Predicted miRNA targets were retrieved using Ingenuity Pathway Analysis (IPA) software, and pathway enrichment and classification were performed using PantherDB. Results Differential expression analysis identified a total of 32 miRNAs in the myocardial specimens. Eight miRNAs had a significant change in the mean difference based on the 95% CI, with the largest increase in mean counts in septic samples with hsa-miR-12136 and the highest fold change with hsa-miR-146b-5p. The threshold for down-regulated miRNAs in sepsis compared to controls was obtained with hsa-miR-144-5p and hsa-miR-451a, with the latter having the largest decrease in mean counts and fold decrease. Conclusions Several regulatory miRNAs were up- or down-regulated in the myocardial tissue of patients deceased with sepsis compared to non-septic subjects. The predicted target genes of miRNAs are associated with biological functions related to cardiovascular functions, cell viability, cell adhesion, and regulation of inflammatory and immune response.
Background Low back pain (LBP) is a common disabling condition. Lumbar disc degeneration (LDD) may be a contributing factor for LBP. Modic change (MC), a distinct phenotype of LDD, is presented as a pathological bone marrow signal change adjacent to vertebral endplate on MRI. It is strongly associated with LBP and has heritability around 30%. Our objective was to identify genetic loci associated with MC using a genome-wide meta-analysis. Methods Presence of MC was evaluated in lumbar MRI in the Northern Finland Birth Cohort 1966 (n=1182) and TwinsUK (n=647). Genome-wide association analyses were carried out using linear regression model. Inverse-variance weighting approach was used in the meta-analysis. Results A locus associated with MC (p<5e-8) was found on chromosome 9 with the lead SNP rs1934268 in an intron of the PTPRD gene. It is located in the binding region of BCL11A, SPI1 and PBX3 transcription factors. The SNP was nominally associated with LBP in TwinsUK (p=0.001) but not associated in the UK Biobank (p=0.914). Suggestive signals (p<1e-5) were identified near XKR4 , SCIN , MGMT , DLG2 , ZNF184 and OPRK1 . Conclusion PTPRD is a novel candidate gene for MC that may act via the development of cartilage or nervous system; further work is needed to define the mechanisms underlying the pathways leading to development of MC. This is the first genome-wide meta-analysis of MC, and the results pave the way for further studies on the genetic factors underlying the various features of spine degeneration and LBP.
The prognostic significance of the major redox regulator, nuclear factor erythroid-2-related factor 2 (NRF2), is recognized in many cancers, but the role of NRF3 is not studied. Analysis from the Gene Expression Omnibus datasets showed that NRF3 mRNA levels increased from benign to dysplastic naevi (p = 0.04). We characterized the immunohistochemical expression of NRF3 in 81 naevi, 67 primary skin melanomas, and 51 lymph node metastases. The immunohistochemical expression of cytoplasmic NRF3 decreased from benign to dysplastic naevi (p < 0.001) and further to primary melanomas (p < 0.001). High cytoplasmic NRF3 protein expression in pigment cells of the primary melanomas associated with worse melanoma-specific survival in multivariate analysis, specifically in the subgroup of patients with the lymph node metastases at the time of diagnosis (hazard ratio 3.179; 95% confidence interval 1.065-9.493; p = 0.038). Intriguingly, we did not observe associations between NRF3 and the traditional prognostic factors such as Breslow thickness, ulceration, or stage. Together, this data represents the primary description about the role of NRF3 in pigment tumours that is worthy of further explorations.
Early-onset osteoporosis is characterized by low bone mineral density (BMD) and fractures since childhood or young adulthood. Several monogenic forms have been identified but the contributing genes remain inadequately characterized. In search for novel variants and novel candidate loci, we screened a cohort of 70 young subjects with mild to severe skeletal fragility for rare copy-number variants (CNVs). Our study cohort included 15 subjects with primary osteoporosis before age 30 years and 55 subjects with a pathological fracture history and low or normal BMD before age 16 years. A custom-made high-resolution comparative genomic hybridization array with enriched probe density in >1,150 genes important for bone metabolism and ciliary function was used to search for CNVs. We identified altogether 14 rare CNVs. Seven intronic aberrations were classified as likely benign. Five CNVs of unknown clinical significance affected coding regions of genes not previously associated with skeletal fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF, and SCN4A). Finally, two CNVs were pathogenic and likely pathogenic, respectively: a 4 kb deletion involving exons 1-4 of COL1A2 (NM_000089.3) and a 12.5 kb duplication of exon 3 in PLS3 (NM_005032.6). Although both genes have been linked to monogenic forms of osteoporosis, COL1A2 deletions are rare and PLS3 duplications have not been described previously. Both CNVs were identified in subjects with significant osteoporosis and segregated with osteoporosis within the families. Our study expands the number of pathogenic CNVs in monogenic skeletal fragility and shows the validity of targeted CNV screening to potentially pinpoint novel candidate loci in early-onset osteoporosis.
Study Design. A family-based study. Objective. The aim of this study was to identify rare genetic factors predisposing to Modic changes (MCs). Summary of Background Data. Lumbar disc degeneration (LDD) is one of the contributing factors behind low back pain (LBP). Lumbar MC visualized as bone marrow signal intensity changes on magnetic resonance imaging (MRI) represent a specific phenotype of LDD, which has a stronger association with LBP than LDD without MC. Methods. The study set consisted of two Finnish families: Family I included seven affected and four unaffected individuals and Family II eight affected and seven unaffected individuals. MCs were evaluated in 26 individuals using MRI. Whole exome sequencing was used to identify alleles cosegregating with MC. Annotate variation was used to carry out functional annotation of alleles and their frequencies were evaluated using 1000Genomes, Sequencing Initiative Suomi (SISu), and the Exome Aggregation Consortium (ExAC) databases. Results. We identified predisposing genetic alleles for MC in two Finnish families. In each family, only single allele cosegregated with MC. In Family I, the observed allele was an insertion and deletion in the HSPG2 gene, resulting in a premature termination codon. In Family II, a single nucleotide polymorphism (rs61753465) in the MAML1 gene was identified in all affected family members. Conclusion. We have identified two novel candidate genes, MAML1 and HSPG2, associating with MC. These genes are important in cartilage structure and joint cartilage maintenance. Our findings are novel among lumbar spine degenerative phenotypes. Level of Evidence: N/A
Matrix metalloproteinase-8 (MMP-8) has oncosuppressive properties in various cancers. We attempted to assess MMP-8 function in oral tongue squamous cell carcinoma (OTSCC). MMP-8 overexpressing OTSCC cells were used to study the effect of MMP-8 on proliferation, apoptosis, migration, invasion and gene and protein expression. Moreover, MMP-8 functions were assessed in the orthotopic mouse tongue cancer model and by immunohistochemistry in patient samples. MMP-8 reduced the invasion and migration of OTSCC cells and decreased the expression of MMP-1, cathepsin-K and vascular endothelial growth factor-C (VEGF-C). VEGF-C was induced by transforming growth factor-β1 (TGF-β1) in control cells, but not in MMP-8 overexpressing cells. In human OTSCC samples, low MMP-8 in combination with high VEGF-C was an independent predictor of poor cancer-specific survival. TGF-β1 treatment also restored the migration of MMP-8 overexpressing cells to the level of control cells. In mouse tongue cancer, MMP-8 did not inhibit metastasis, possibly because it was eliminated in the peripheral carcinoma cells. The suppressive effects of MMP-8 in OTSCC may be mediated through interference of TGF-β1 and VEGF-C function and altered proteinase expression. Together, low MMP-8 and high VEGF-C expression have strong independent prognostic value in OTSCC.