A semiquantitative theory to describe the adhesion mechanism between an elastic membrane and a solid substrate (or another membrane) was developed. Since the membrane bending deformation requires a relatively small energy cost, thermally excited fluctuations may give rise to a local protrusion connecting the membrane to the substrate. This transient adhesion site is stabilized by short-range adhesion forces and it is destabilized by repulsion and elastic deformation energy. Above a critical radius of the contact site, adhesion forces prevail, enabling the contact site to expand until complete membrane−substrate adhesion is attained. This represents a typical nucleation mechanism involving both growth and dissolution processes. However, here we prove that also in the barrierless region, well beyond the critical radius, the spreading rate of a membrane still remains rather small, even under the favorable assumption of strong, sudden, and irreversible membrane−substrate adhesion. A detailed analysis of the membrane vibrational behavior near the adhesion patch rim suggests a reasonable mechanism for the spreading rate that has been analyzed by nonequilibrium statistical mechanics approaches. In relevant limiting cases, the model yields simple analytical formulas. Approximate relationships between the spreading rate and parameters like membrane elastic bending modulus, membrane−substrate interaction, temperature, and solvent viscosity have been found.
The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.
Protein uptake at the interface of a millimeter-sized air bubble in water is investigated by a recently developed differential interferometric technique. The technique allows the study of capillary waves with amplitudes around 10-9 m, excited at the surface of the bubble by an electric field of intensity on the order of 10 V/cm. When one studies the resonant modes of the bubble (radial and shape modes), it is possible to assess variations of interfacial properties and, in particular, of the net surface charge as a function of bulk protein concentration. Sensing the interfacial charge, the technique enables us to follow the absorption process in conditions of low concentrations, not easily assessable by other methods. We focus on bovine serum albumin (BSA) and lysozyme as representatives of typical globular proteins. To provide comprehensive insight into the novelty of the technique, we also investigated the equilibrium adsorption of sodium dodecyl sulfate (SDS) ionic surfactant for bulk concentrations at hundreds of times lower than the Critical Micelle Concentration (CMC). Results unveil how the absorption of charged molecules affects the amplitudes of the bubble resonant modes even before affecting the frequencies in a transition-like fashion. Different adsorption models are proposed and developed. They are validated against the experimental findings by comparing frequency and amplitude data. By measuring the charging rate of the bubble interface, we have followed the absorption kinetics of BSA and lysozyme recognizing a slow, energy barrier limited phenomena with characteristic times in agreement with data in the literature. The evaluation of the surface excess concentration (Γ) of BSA and SDS at equilibrium is obtained by monitoring charge uptake. At the investigated low bulk concentrations, reliable comparisons with literature data from equilibrium surface tension isotherm models are reported.
The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP's rat counterpart, the rat islet amyloid polypeptide (rIAPP), is non-toxic. It has been a puzzle why these peptides behave so differently. We combined multiscale modelling and theory to explain the drastically different dynamics of hIAPP and rIAPP: The differences stem from electrostatic dipolar interactions. hIAPP forms pentameric aggregates with the hydrophobic residues facing the membrane core and stabilizing water-conducting pores. We give predictions for pore sizes, the number of hIAPP peptides and aggregate morphology. We show the importance of curvature-induced stress at the early stages of hIAPP assembly and the α-helical structures over β-sheets. This agrees with recent fluorescence spectroscopy experiments.
Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration.
Many PEGylated nanoparticles activate the complement system, which is an integral component of innate immunity. This is of concern as uncontrolled complement activation is potentially detrimental and contributes to disease pathogenesis. Here, it is demonstrated that, in contrast to carboxyPEG2000-stabilized poly(lactic-co-glycolic acid) nanoparticles, surface camouflaging with appropriate combinations and proportions of carboxyPEG2000 and methoxyPEG550 can largely suppress nanoparticle-mediated complement activation through the lectin pathway. This is attributed to the ability of the short, rigid methoxyPEG550 chains to laterally compress carboxyPEG2000 molecules to become more stretched and assume an extended, random coil configuration. As supported by coarse-grained molecular dynamics simulations, these conformational attributes minimize statistical protein binding/intercalation, thereby affecting sequential dynamic processes in complement convertase assembly. Furthermore, PEG pairing has no additional effect on nanoparticle longevity in the blood and macrophage uptake. PEG pairing significantly overcomes nanoparticle-mediated complement activation without the need for surface functionalization with complement inhibitors.