The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population.
Uptake of P(i) at the cellular membrane is essential for the maintenance of cell viability. However, phosphate overload is also stressful for cells and can result in cellular damage. In the present study, we investigated the effects of the transgenic overexpression of type III P(i) transporter Pit-1 to explore the role of extracellular P(i) in glomerular sclerosis during chronic renal disease. Pit-1 transgenic (TG) rats showed progressive proteinuria associated with hypoalbuminemia and dyslipidemia. Ultrastructural analysis of TG rat kidney by transmission electron microscopy showed a diffuse effacement of the foot processes of podocytes and a thickening of the glomerular basement membrane, which were progressively exhibited since 8 wk after birth. TG rats died at 32 wk of age due to cachexia. At this time, more thickening of the glomerular basement membrane and segmental sclerosis were observed in glomeruli of the TG rats. Immunohistochemical examination using anti-connexin 43 and anti-desmin antibodies suggested the progressive injury of podocytes in TG rats. TG rats showed higher P(i) uptake in podocytes than wild-type rats, especially under low P(i) concentration. When 8-wk-old wild-type and TG rats were fed a 0.6% normal phosphate (NP) or 1.2% phosphate (HP) diet for 12 wk, HP diet-treated TG rats showed more progressive proteinuria and higher serum creatinine levels than NP diet-treated TG rats. In conclusion, our findings suggest that overexpression of Pit-1 in rats induces phosphate-dependent podocyte injury and damage to the glomerular barrier, which result in the progression of glomerular sclerosis in the kidney.
Cognate antigen recognition by CD4+ T cells is thought to contribute to the tissue specificity of various autoimmune diseases, particularly those associated with class II MHC alleles. However, we show that localized class II MHC–dependent arthritis in F759 mice depends on local events that result in the accumulation of activated CD4+ T cells in the absence of cognate antigen recognition. In this model, transfer of in vitro polarized Th17 cells combined with the induction of experimental microbleeding resulted in CCL20 production, the accumulation of T cells in the joints, and local production of IL-6. Disease induction required IL-17A production by transferred T cells, IL-6 and CCL20 expression, and STAT3 signaling in type I collagen–expressing cells. Our data suggest a model in which the development of autoimmune disease in F759 mice depends on four events: CD4+ T cell activation regardless of antigen specificity, local events that induce T cell accumulation, enhanced sensitivity to T cell–derived cytokines in the tissue, and activation of IL-6 signaling in the tissue. This model provides a possible explanation for why tissue-specific antigens recognized by activated CD4+ T cells have not been identified in many autoimmune diseases, especially those associated with class II MHC molecules.
We have been developing a microsatellite based on our concept of a satellite to meet the potential needs of challenging space-science missions that only a microsatellite can accomplish. A binary black hole (BBH) is a state in which two black holes at the center of their respective galaxies are closing the orbital distance around each other. Observations using conventional large satellites have obtained insufficient results for BBH exploration because the satellites cannot be engaged in the long-term and concentrated observation of astral body such as BBH which is not established the existence. Microsatellites have two advantages; namely, they can be occupied with long-term observation, and they have a low-cost and short-term development compared with large satellites. Thus, we can possibly program a challenging mission for a microsatellite, even with a certain risk. We implemented two key technologies on our microsatellite named ORbiting Binary black-hole Investigation Satellite (ORBIS), namely, a Distributed Architecture with a Common Signboard System and mission-equipment space for astronomical observation equipment. The specifications and progress of each subsystem are reported in this paper, along with an outline and the current status of the ORBIS development.