Abstract Background Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep-learning model using electrocardiogram (ECG) data to enhance AHF identification in the ER. Methods In this retrospective cohort study, we analyzed the ECG data of 19,285 patients who visited ERs of three hospitals between 2016 and 2020; 9,119 with available left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide level data and who were diagnosed with AHF were included in the study. We extracted morphological and clinical parameters from ECG data to train and validate four machine learning models: baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost. Results The CatBoost algorithm outperformed other models, showing superior area under the receiver operating characteristic and area under the precision–recall curve diagnostic accuracy across both internal (0.89 ± 0.01 and 0.89 ± 0.01) and external (0.90 and 0.89) validation datasets, respectively. The model demonstrated high accuracy, precision, recall, and f1 score, indicating robust performance in AHF identification. Conclusion The developed machine learning model significantly enhanced AHF detection in the ER using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a common tool in the ER, can effectively help screen for AHF.
Most agricultural workers are exposed to musculoskeletal disorders due to the characteristics of agricultural work performed manually. As observational methods to prevent musculoskeletal disorders, a cube method has been proposed that considers the risk factors of posture, time and force workload simultaneously. However, force workload could evaluate using the weight of an object or qualitative measurement to prevent interfering with a worker’s occupation. The purpose of this study is to propose a novel method for evaluating quantitatively the risk factor of force in agricultural field using insole system and artificial neural network model. Agricultural simulated experiments were performed on ten healthy adult males and six observers were recruited to evaluate the risk factors of force for the experiments. The model was constructed using the signals measured in the insole system and the consensus among observers about evaluation results. To verify the performance of the model, the performance measurement was calculated using 10-fold cross-validation. The results of the proposed method are compared with those of the observers to verify reproducibility and usefulness. The model showed more than 97% prediction accuracy in all risk levels, and the proposed method showed 1.59%, 0.99 and 0.98 in the coefficient of variation, proportion agreement index, Cohen’s kappa coefficient, and high reproducibility and usefulness when compared with the observers’ evaluation. The method of quantitatively evaluating the risk factor of force proposed in this study is possible to be applied to various agricultural works using observational methods.
Whole-body center of gravity (CG) movements in relation to the center of pressure (COP) offer insights into the balance control strategies of the human body. Existing CG measurement methods using expensive measurement equipment fixed in a laboratory environment are not intended for continuous monitoring. The development of wireless sensing technology makes it possible to expand the measurement in daily life. The insole system is a wearable device that can evaluate human balance ability by measuring pressure distribution on the ground. In this study, a novel protocol (data preparation and model training) for estimating the 3-axis CG trajectory from vertical plantar pressures was proposed and its performance was evaluated. Input and target data were obtained through gait experiments conducted on 15 adult and 15 elderly males using a self-made insole prototype and optical motion capture system. One gait cycle was divided into four semantic phases. Features specified for each phase were extracted and the CG trajectory was predicted using a bi-directional long short-term memory (Bi-LSTM) network. The performance of the proposed CG prediction model was evaluated by a comparative study with four prediction models having no gait phase segmentation. The CG trajectory calculated with the optoelectronic system was used as a golden standard. The relative root mean square error of the proposed model on the 3-axis of anterior/posterior, medial/lateral, and proximal/distal showed the best prediction performance, with 2.12%, 12.97%, and 12.47%. Biomechanical analysis of two healthy male groups was conducted. A statistically significant difference between CG trajectories of the two groups was shown in the proposed model. Large CG sway of the medial/lateral axis trajectory and CG fall of the proximal/distal axis trajectory is shown in the old group. The protocol proposed in this study is a basic step to have gait analysis in daily life. It is expected to be utilized as a key element for clinical applications.
Background: Acute heart failure (AHF) poses significant diagnostic challenges in emergency room (ER) settings due to its varied clinical presentations and the limitations of traditional diagnostic methods. This study aims to develop and evaluate a deep learning model that uses electrocardiogram (ECG) data to enhance the identification of AHF in ER patients. Methods: In this retrospective cohort study, we analyzed ECG data from 19,285 patients who visited the ERs of three hospitals between 2016 and 2020. Among the patients, 9,119 patients with available left ventricular ejection fraction and NT-proBNP levels, who were diagnosed with AHF were included. We extracted morphological and clinical parameters from the ECG data to train and validate four machine learning models: a baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost. Results: The CatBoost algorithm outperformed other models, showing superior AUROC and AUPRC diagnostic accuracy across both internal (0.89±0.01 and 0.89±0.01) and external validation datasets (0.90 and 0.89). In addition, the model demonstrated high metrics in accuracy, precision, recall, and f1-score, indicating robust performance in the identification of AHF. Conclusion: The developed machine learning model significantly enhances the detection of AHF in ER patients using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a commonplace tool in ERs, can effectively screen for AHF.
Abstract Purpose The purpose of this study is to construct a synthetic dataset of ECG signal that overcomes the sensitivity of personal information and the complexity of disclosure policies. Methods The public dataset was constructed by generating synthetic data based on the deep learning model using a convolution neural network (CNN) and bi-directional long short-term memory (Bi-LSTM), and the effectiveness of the dataset was verified by developing classification models for ECG diagnoses. Results The synthetic 12-lead ECG dataset generated consists of a total of 6000 ECGs, with normal and 5 abnormal groups. The synthetic ECG signal has a waveform pattern similar to the original ECG signal, the average RMSE between the two signals is 0.042 µV, and the average cosine similarity is 0.993. In addition, five classification models were developed to verify the effect of the synthetic dataset and showed performance similar to that of the model made with the actual dataset. In particular, even when the real dataset was applied as a test set to the classification model trained with the synthetic dataset, the classification performance of all models showed high accuracy (average accuracy 93.41%). Conclusion The synthetic 12-lead ECG dataset was confirmed to perform similarly to the real-world 12-lead ECG in the classification model. This implies that a synthetic dataset can perform similarly to a real dataset in clinical research using AI. The synthetic dataset generation process in this study provides a way to overcome the medical data disclosure challenges constrained by privacy rights, a way to encourage open data policies, and contribute significantly to promoting cardiovascular disease research.