The Neuroscience Monoclonal Antibody Sequencing Initiative (NeuroMabSeq) is a concerted effort to determine and make publicly available hybridoma-derived sequences of monoclonal antibodies (mAbs) valuable to neuroscience research. Over 30 years of research and development efforts including those at the UC Davis/NIH NeuroMab Facility have resulted in the generation of a large collection of mouse mAbs validated for neuroscience research. To enhance dissemination and increase the utility of this valuable resource, we applied a high-throughput DNA sequencing approach to determine immunoglobulin heavy and light chain variable domain sequences from source hybridoma cells. The resultant set of sequences was made publicly available as searchable DNA sequence database ( neuromabseq.ucdavis.edu ) for sharing, analysis and use in downstream applications. We enhanced the utility, transparency, and reproducibility of the existing mAb collection by using these sequences to develop recombinant mAbs. This enabled their subsequent engineering into alternate forms with distinct utility, including alternate modes of detection in multiplexed labeling, and as miniaturized single chain variable fragments or scFvs. The NeuroMabSeq website and database and the corresponding recombinant antibody collection together serve as a public DNA sequence repository of mouse mAb heavy and light chain variable domain sequences and as an open resource for enhancing dissemination and utility of this valuable collection of validated mAbs.
The purpose of this study was to identify loci associated with Mycobacterium avium subspecies paratuberculosis (Map) infection status in US Holsteins using the Illumina BovineSNP50 BeadChip whole genome single nucleotide polymorphism (SNP) assay. Two hundred forty-five cows from dairies in New York, Pennsylvania and Vermont enrolled in longitudinal herd studies between January 1999 and November 2007 were assessed for the presence of Map in both faecal and tissue samples. An animal was considered tissue infected if any sample contained at least one colony forming unit of Map per gram of tissue (CFU/g) and the same definition was employed for faecal samples. Each animal was genotyped with the Illumina BovineSNP50 BeadChip and after quality assurance filtering, 218 animals and 45 683 SNPs remained. We sought to identify loci associated with four different case/control classifications: presence of Map in the tissue, presence of Map in faeces, presence of Map in both tissue and faeces and presence of Map in tissue but not faeces. A case-control genome wide association study was conducted to test the four different classifications of Map infection status (cases) when compared with a Map-negative control group (control). Regions on chromosomes 1, 5, 7, 8, 16, 21 and 23 were identified with moderate significance (P < 5 x 10(-5)). Two regions, one on chromosome 3 (near EDN2) and another on chromosome 9 (no positional gene candidates), were identified with a high level of association to the presence of Map in tissue and both tissue and faeces respectively (P < 5 x 10(-7), genome-wide Bonferonni P < 0.05).
Abstract Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium 14028s (STm 14028s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157:H7 and STm 14028s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 h post inoculation with STm 14028s compared to that with O157:H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 h compared to the subsequent 20 h after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.
Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA) affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta) on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight) of BPA during early (50–100±2 days post conception, dpc) or late (100±2 dpc – term), gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6) was down-regulated in the left ventricle, and 'A Disintegrin and Metalloprotease 12', long isoform (Adam12-l) was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.
Introduction Irrigation management dramatically alters soil water availability and distribution and could impact soil microbial communities and carbon (C) and nitrogen (N) cycling to an even greater degree than observed in rainfed systems. Adoption of subsurface drip irrigation (SDI) in California’s Mediterranean agroecosystems provides agronomic benefits but wets only a portion of the soil volume near the root zone, leaving the rest dry throughout the growing season. In contrast, traditional furrow irrigation (FI) has periodic wetting events with more homogenous moisture distribution. With conversion to precision irrigation methods, how will the microbiome respond to changes moisture availability, and how is their response influenced by soil C and N resource levels? Methods In a field experiment in California, we compared SDI and FI’s effects on microbial communities and evaluated how long-term organic and conventional management systems impact outcomes. Throughout the growing season, soil samples were collected at two depths (0-15, 15-30 cm) and three distances from bed center (10, 25, 45 cm) where the drip tape is located. Results At harvest, soils irrigated using SDI had lower microbial biomass C (MBC) than under FI at the surface and showed a build-up of soluble C and N relative to MBC at the bed edge, indicating reduced microbial uptake. Community composition at the bed edge also diverged between SDI and FI, favoring Actinobacteria in the former and Acidobacteria and Gemmatimonadetes in the latter. Regardless of irrigation type, dry areas of the bed had the highest alpha diversity indices. Response to SDI was similar in organic and conventional systems, though organic had higher MBC, DOC, and relative abundance of Proteobacteria and fungal lipids, regardless of irrigation. Discussion Prolonged dry conditions in SDI appeared to limit microbial access to resources and changed community composition. As seen in non-agricultural systems, the severity and frequency of moisture changes, adaptation of the communities, and resource availability affect microbial response. Decoupling of C and N pools in dry surface soils under SDI may increase the potential for losses of DOC and nitrate with the first winter rains in this Mediterranean climate.
Amplification, sequencing, and analysis of the 16S rRNA gene affords characterization of microbial community composition. As this tool has become more popular and amplicon-sequencing applications have grown in the total number of samples, growth in sample multiplexing is becoming necessary while maintaining high sequence quality and sequencing depth. Here, modifications to the Illumina HiSeq 2500 platform are described which produce greater multiplexing capabilities and 300-bp paired-end reads of higher quality than those produced by the current Illumina MiSeq platform. To improve the feasibility and flexibility of this method, a 2-step PCR amplification protocol is also described that allows for targeting of different amplicon regions, and enhances amplification success from samples with low bacterial bioburden. IMPORTANCE Amplicon sequencing has become a popular and widespread tool for surveying microbial communities. Lower overall costs associated with high-throughput sequencing have made it a widely adopted approach, especially for projects that necessitate sample multiplexing to eliminate batch effect and reduced time to acquire data. The method for amplicon sequencing on the Illumina HiSeq 2500 platform described here provides improved multiplexing capabilities while simultaneously producing greater quality sequence data and lower per-sample cost relative to those of the Illumina MiSeq platform without sacrificing amplicon length. To make this method more flexible for various amplicon-targeted regions as well as improve amplification from low-biomass samples, we also present and validate a 2-step PCR library preparation method.
Supplementary Data from Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis
Supplementary Data from Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis
Supplementary Data from Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis