Therapeutic targeting of membrane-associated viral proteins is complicated by the challenge of investigating their enzymatic activities in the native membrane-bound state. To permit functional characterization of these proteins, we hypothesized that the supported lipid bilayer (SLB) can support in situ reconstitution of membrane-associated viral protein complexes. As proof-of-principle, we selected the hepatitis C virus (HCV) NS5B polymerase which is essential for HCV genome replication, and determined that the SLB platform enables functional reconstitution of membrane protein activity. Quartz crystal microbalance with dissipation (QCM-D) monitoring enabled label-free detection of full-length NS5B membrane association, its interaction with replicase subunits NS3, NS5A, and template RNA, and most importantly its RNA synthesis activity. This latter activity could be inhibited by the addition of candidate small molecule drugs. Collectively, our results demonstrate that the SLB platform can support functional studies of membrane-associated viral proteins engaged in critical biological activities.
Abstract Currently approved anti-influenza drugs target viral proteins, are subtype limited, and are challenged by rising antiviral resistance. To overcome these limitations, we sought to identify a conserved essential RNA secondary structure within the genomic RNA predicted to have greater constraints on mutation in response to therapeutics targeting this structure. Here, we identified and genetically validated an RNA stemloop structure we termed PSL2, which serves as a packaging signal for genome segment PB2 and is highly conserved across influenza A virus (IAV) isolates. RNA structural modeling rationalized known packaging-defective mutations and allowed for predictive mutagenesis tests. Disrupting and compensating mutations of PSL2’s structure give striking attenuation and restoration, respectively, of in vitro virus packaging and mortality in mice. Antisense Locked Nucleic Acid oligonucleotides (LNAs) designed against PSL2 dramatically inhibit IAV in vitro against viruses of different strains and subtypes, possess a high barrier to the development of antiviral resistance, and are equally effective against oseltamivir carboxylate-resistant virus. A single dose of LNA administered 3 days after, or 14 days before, a lethal IAV inoculum provides 100% survival. Moreover, such treatment led to the development of strong immunity to rechallenge with a ten-fold lethal inoculum. Together, these results have exciting implications for the development of a versatile novel class of antiviral therapeutics capable of prophylaxis, post-exposure treatment, and “just-in-time” universal vaccination against all IAV strains, including drug-resistant pandemics. One Sentence Summary Targeting a newly identified conserved RNA structure in the packaging signal region of influenza segment PB2 abrogates virus production in vitro and dramatically attenuates disease in vivo .
Introduction. Medical advances have led to an increase in the world's population of immunosuppressed individuals. The most severely immunocompromised patients are those who have been diagnosed with a hematologic malignancy, solid organ tumor, or who have other conditions that require immunosuppressive therapies and/or solid organ or stem cell transplants.
Abstract Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome 1, 2 . The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides 3–6 . To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve 7 pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5′ end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.