Abstract Aim The ε4 allele of apolipoprotein E gene (APOE) is a well‐known risk factor of late‐onset Alzheimer's disease. However, little is known why this variant confers a risk for Alzheimer's disease. The aim of this study was to examine the influence of the APOE genotype on cerebrospinal fluid (CSF) protein levels. Methods The present study performed a secondary analysis on our previously generated database to compare the CSF levels of 1128 proteins between APOE‐ε4 carriers (28 subjects) and noncarriers (104 subjects). All subjects were physically healthy Japanese individuals without dementia. Results CSF levels of apoE2, apoE3, and apoE4 were significantly higher (all nominal P < 10 × 10 −5 , false discovery rate < 0.001) and those of tumor necrosis factor‐α (TNF‐α) were significantly lower (nominal P = 1.39 × 10 −6 , false discovery rate < 0.001) in APOE‐ε4 carriers than in noncarriers. No significant correlation was observed between the CSF levels of TNF‐α and any of the apoE proteins. Conclusions Our findings indicate the possible roles of apoE and TNF‐α in the pathogenesis of APOE‐ε4‐associated Alzheimer's disease.
Article AbstractObjective: Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample.Methods: Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity.Results: There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P < .016) and a similar trend in patients, while sex was unrelated to any metabolite. All monoamine metabolites in moderately to severely depressed patients (17-item Hamilton Depression Rating Scale score > 12) were significantly lower than those in controls (P < .0005 for all 3 metabolites). We found that antidepressants decreased the levels of 5-HIAA (ρ = −0.39, P < .001) and MHPG (ρ = −0.49, P < .0001) and that antipsychotics increased levels of HVA (ρ = 0.24, P < .05). There was a strong correlation between HVA and 5-HIAA levels (controls: ρ = 0.79, P = .000001; MDD: ρ = 0.66, P = .000001). HVA levels (ρ = −0.43, P < .001) and 5-HIAA levels (ρ = −0.23, P < .05), but not MHPG levels (ρ = −0.18, P > .1), were related to depression severity.Conclusions: CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting.
Genome-wide association studies (GWASs) have identified >100 susceptibility loci for schizophrenia (SCZ) and demonstrated that SCZ is a polygenic disorder determined by numerous genetic variants but with small effect size. We conducted a GWAS in the Japanese (JPN) population (a) to detect novel SCZ-susceptibility genes and (b) to examine the shared genetic risk of SCZ across (East Asian [EAS] and European [EUR]) populations and/or that of trans-diseases (SCZ, bipolar disorder [BD], and major depressive disorder [MDD]) within EAS and between EAS and EUR (trans-diseases/populations). Among the discovery GWAS subjects (JPN-SCZ GWAS: 1940 SCZ cases and 7408 controls) and replication dataset (4071 SCZ cases and 54479 controls), both comprising JPN populations, 3 novel susceptibility loci for SCZ were identified: SPHKAP (Pbest = 4.1 × 10-10), SLC38A3 (Pbest = 5.7 × 10-10), and CABP1-ACADS (Pbest = 9.8 × 10-9). Subsequent meta-analysis between our samples and those of the Psychiatric GWAS Consortium (PGC; EUR samples) and another study detected 12 additional susceptibility loci. Polygenic risk score (PRS) prediction revealed a shared genetic risk of SCZ across populations (Pbest = 4.0 × 10-11) and between SCZ and BD in the JPN population (P ~ 10-40); however, a lower variance-explained was noted between JPN-SCZ GWAS and PGC-BD or MDD within/across populations. Genetic correlation analysis supported the PRS results; the genetic correlation between JPN-SCZ and PGC-SCZ was ρ = 0.58, whereas a similar/lower correlation was observed between the trans-diseases (JPN-SCZ vs JPN-BD/EAS-MDD, rg = 0.56/0.29) or trans-diseases/populations (JPN-SCZ vs PGC-BD/MDD, ρ = 0.38/0.12). In conclusion, (a) Fifteen novel loci are possible susceptibility genes for SCZ and (b) SCZ "risk" effect is shared with other psychiatric disorders even across populations.
Synthetic glucocorticoids such as dexamethasone are widely used to treat a variety of inflammatory and autoimmune conditions, but they may induce adverse events including hyperglycemia. To shed light on the effect and action mechanism of dexamethasone, we examined the alterations of gene expression levels caused by dexamethasone. Microarray analysis was performed on whole blood collected from 24 physically healthy subjects at baseline and after dexamethasone administration. The expression levels of resistin mRNA were found to be significantly increased after the dexamethasone administration. In a separate sample of 12 subjects, we examined plasma resistin protein levels and found that they were increased after dexamethasone administration. Furthermore, the plasma mRNA and protein levels of resistin were significantly higher in individuals who carried the A allele of RETN single nucleotide polymorphism rs3219175 than in those who did not carry the allele. There was no significant interaction between the genotype and dexamethasone administration. No significant correlation was found between plasma levels of cortisol and resistin. Consistent with previous studies, the genotype of RETN rs3219175 was a strong determinant of resistin levels. The present study showed that oral administration of dexamethasone increases the protein and mRNA levels of resistin irrespective of the rs3219175 genotype.
Inhibition of the β-secretase, BACE1, which cleaves amyloid precursor protein (APP) to produce β-amyloid protein (Aβ), is thought to be a feasible therapeutic strategy for Alzheimer's disease. Reticulon (RTN) proteins such as RTN3 have been identified as membrane proteins that interact with BACE1 and inhibit its Aβ-generating activity. In this study, we investigated whether RTN3 can regulate Aβ production in vivo, using transgenic (Tg) mice expressing APP with Swedish and London mutations (APP Tg mice) and those expressing RTN3; the latter mice showed ~1.4-fold higher expression levels of RTN3 protein in the cerebral cortex than non-Tg controls. We analyzed the brains of single APP Tg and double APP/RTN3 Tg mice at the age of approximately 15 months. The levels of secreted APP-β, a direct BACE1 cleavage product of APP, in Tris-soluble fraction were considerably reduced in the hippocampus and cerebral cortex of APP/RTN3 Tg mice relative to those in APP Tg mice. Immunohistochemical analyses demonstrated that Aβ burden and plaques were significantly (by approximately 50%) decreased in both the hippocampus and cerebral cortex of double Tg mice compared to APP Tg mice. Furthermore, the levels of guanidine-soluble Aβ40 and Aβ42 in these brain regions of APP/RTN3 Tg mice were relatively lower than those in APP Tg mice. These findings indicate that even a small increase in RTN3 expression exerts suppressive effects on amyloidogenic processing of APP and Aβ accumulation through modulation of BACE1 activity in vivo, and suggest that induction of RTN3 might be an effective therapeutic strategy against Alzheimer's disease. Keywords: Alzheimer's disease, β-amyloid, β-secretase, BACE1, reticulon; transgenic mice