Microbes in indoor environments are constantly being exposed to antimicrobial surface finishes. Many are rendered non-viable after spending extended periods of time under low-moisture, low-nutrient surface conditions, regardless of whether those surfaces have been amended with antimicrobial chemicals. However, some microorganisms remain viable even after prolonged exposure to these hostile conditions. Work with specific model pathogens makes it difficult to draw general conclusions about how chemical and physical properties of surfaces affect microbes. Here, we explore the survival of a synthetic community of non-model microorganisms isolated from built environments following exposure to three chemically and physically distinct surface finishes. Our findings demonstrated the differences in bacterial survival associated with three chemically and physically distinct materials. Alkaline clay surfaces select for an alkaliphilic bacterium, Kocuria rosea, whereas acidic mold-resistant paint favors Bacillus timonensis, a Gram-negative spore-forming bacterium that also survives on antimicrobial surfaces after 24 hours of exposure. Additionally, antibiotic-resistant Pantoea allii did not exhibit prolonged retention on antimicrobial surfaces. Our controlled microcosm experiment integrates measurement of indoor chemistry and microbiology to elucidate the complex biochemical interactions that influence the indoor microbiome.
Background The potential role of the gut microbiome in cardiovascular diseases is increasingly evident. Arterial restenosis attributable to neointimal hyperplasia after cardiovascular procedures such as balloon angioplasty, stenting, and bypass surgery is a common cause of treatment failure, yet whether gut microbiota participate in the development of neointimal hyperplasia remains largely unknown. Methods and Results We performed fecal microbial transplantation from conventionally raised male C57BL/6 mice to age-, sex-, and strain-matched germ-free mice. Five weeks after inoculation, all mice underwent unilateral carotid ligation. Neointimal hyperplasia development was quantified after 4 weeks. Conventionally raised and germ-free cohorts served as comparison groups. Conclusions Germ-free mice have significantly attenuated neointimal hyperplasia development compared with conventionally raised mice. The arterial remodeling response is restored by fecal transplantation. Our results describe a causative role of gut microbiota in contributing to the pathogenesis of neointimal hyperplasia.
DNA stable isotope probing (SIP) was used to track the uptake of organic and inorganic carbon sources for TACK archaea (Thaumarchaeota/Aigarchaeota/Crenarchaeota/Korarchaeota) on a cruise of opportunity in the North Atlantic. Due to water limitations, duplicate samples from the deep photic (60-115 m), the mesopelagic zones (local oxygen minimum; 215-835 m) and the bathypelagic zone (2085-2835 m) were amended with various combinations of 12C- or 13C-acetate/urea/bicarbonate to assess cellular carbon acquisition. The SIP results indicated the majority of TACK archaeal operational taxonomic units (OTUs) incorporated 13C from acetate and/or urea into newly synthesized DNA within 48 h. A small fraction (16%) of the OTUs, often representing the most dominant members of the archaeal community, were able to incorporate bicarbonate in addition to organic substrates. Only two TACK archaeal OTUs were found to incorporate bicarbonate but not urea or acetate. These results further demonstrate the utility of SIP to elucidate the metabolic capability of mesothermal archaea in distinct oceanic settings and suggest that TACK archaea play a role in organic carbon recycling in the mid-depth to deep ocean.
Ecologists have long sought to understand diversity-disturbance relationships (DDRs) in ecosystems. The Intermediate Disturbance Hypothesis (IDH) has been an important theoretical foundation for much of this work, and posits that species diversity is maximized at intermediate levels of disturbance. However, recent reviews have indicated that IDH is supported in fewer than half of all empirical studies, leading some ecologists to argue for the abandonment of IDH. In this study, we addressed this inconsistency between theory and observations by characterizing multidimensional DDRs in complex freshwater microbial communities under controlled laboratory conditions. We found that unimodal DDRs predicted by IDH were not consistently observed when comparing microbial communities across trophic levels, as suggested by prior modeling work. However, when we looked within the same trophic level, we observed DDRs consistent with IDH across ranges of both intensity and frequency of disturbance, independent of disturbance type. We did not observe U-shaped DDRs predicted by recent models. While our results largely support the original mechanistic understanding of IDH, we propose a state-bifurcation model, whereby maximum diversity is stochastically maintained as the system approaches a transition point between two absorbing states. Together, our results lend strong support to IDH and reveal a potential non-equilibrium coexistence mechanism. The paucity of field studies supporting IDH likely stem from sampling a small window of the entire DDR curve, or from confusion over when and where we would expect to observe IDH patterns.
Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations, and the consequences of this relationship for ecosystem function, are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life-history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community types, which gave rise to transient diversity maxima when community types were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.