This paper provides an overview of the Dragon 4 project dealing with operational monitoring of sea ice and sea surface salinity (SSS) and new product developments for altimetry data. To improve sea ice thickness retrieval, a new method was developed to match the Cryosat-2 radar waveform. Additionally, an automated sea ice drift detection scheme was developed and tested on Sentinel-1 data, and the sea ice drifty capability of Gaofen-4 geostationary optical data was evaluated. A second topic included implementation and validation of a prototype of a Fully-Focussed SAR processor adapted for Sentinel-3 and Sentinel-6 altimeters and evaluation of its performance with Sentinel-3 data over the Yellow Sea; the assessment of sea surface height (SSH), significant wave height (SWH), and wind speed measurements using different altimeters and CFOSAT SWIM; and the fusion of SSH measurements in mapping sea level anomaly (SLA) data to detect mesoscale eddies. Thirdly, the investigations on the retrieval of SSS include simulations to analyse the performances of the Chinese payload configurations of the Interferometric Microwave Radiometer and the Microwave Imager Combined Active and Passive, SSS retrieval under rain conditions, and the combination of active and passive microwave to study extreme winds.
We present new high resolution (R>50,000) absorption measurements of the NaI doublet (5889 - 5895A) along 482 nearby sight-lines, in addition to 807 new measurements of the CaII K (3933A) absorption line. We have combined these new data with previously reported measurements to produce a catalog of absorptions towards a total of 1857 early-type stars located within 800pc of the Sun. Using these data we have determined the approximate 3-dimensional spatial distribution of neutral and partly ionized interstellar gasdensity within a distance-cube of 300pc from the Sun. All newly recorded spectra were analyzed by means of a multi-component line profile-fitting program, in most cases using simultaneous fits to the line doublets. Normalized absorption profiles were fitted by varying the velocity, doppler width and column density for all intervening interstellar clouds. The resulting total column densities were then used in conjunction with the Hipparcos distances of the target stars to construct inversion maps of the 3-D spatial density distribution of the NaI and CaII bearing gas. A plot of the equivalent width of NaI versus distance reveals a wall of neutral gas at ~80pc that can be associated with the boundary wall to the central rarefied Local Cavity region. In contrast, a similar plot for the equivalent width of CaII shows no sharply increasing absorption at 80pc, but instead we observe a slowly increasing value of CaII equivalent width with increasing sight-line distance sampled.
Earlier studies have pointed out systematic differences between sea surface salinity retrieved from L-band radiometric measurements and measured in situ, which depend on sea surface temperature (SST). We investigate how to cope with these differences given existing physically based radiative transfer models. In order to study differences coming from seawater dielectric constant parametrization, we consider the model of Somaraju and Trumpf (2006) (ST) which is built on sound physical bases and close to a single relaxation term Debye equation. While ST model uses fewer empirically adjusted parameters than other dielectric constant models currently used in salinity retrievals, ST dielectric constants are found close to those obtained using the Meissner and Wentz (2012) (MW) model. The ST parametrization is then slightly modified in order to achieve a better fit with seawater dielectric constant inferred from SMOS data. Upgraded dielectric constant model is intermediate between KS and MW models. Systematic differences between SMOS and in situ salinity are reduced to less than +/-0.2 above 0 °C and within +/-0.05 between 7 °C and 28 °C. Aquarius salinity becomes closer to in situ salinity, and within +/-0.1. The order of magnitude of remaining differences is very similar to the one achieved with the Aquarius version 5 empirical adjustment of wind model SST dependence. The upgraded parametrization is recommended for use in processing the SMOS data. Further assessment or improvement using new laboratory measurements should consider keeping the physics-based formulation by ST that has been shown here to be very efficient.
Context. Three-dimensional (3D) kinetic maps of the Milky Way interstellar medium are an essential tool in studies of its structure and of star formation. Aims. We aim to assign radial velocities to Galactic interstellar clouds now spatially localized based on starlight extinction and star distances from Gaia and stellar surveys. Methods. We developed an automated search for coherent projections on the sky of clouds isolated in 3D extinction density maps on the one hand, and regions responsible for CO radio emissions at specific Doppler shifts on the other hand. The discrete dust structures were obtained by application of the Fellwalker algorithm to a recent 3D extinction density map. For each extinction cloud, a technique using a narrow sliding spectral window moved along the contour-bounded CO spectrum and geometrical criteria was used to select the most likely velocity interval. Results. We applied the new contour-based technique to the 3D extinction density distribution within the volume encompassing the Taurus, Auriga, Perseus, and California molecular complexes. From the 45 clouds issued from the decomposition, 42 were assigned a velocity. The remaining structures correspond to very weak CO emission or extinction. We used the non-automated assignments of radial velocities to clouds of the same region presented in Paper I and based on KI absorption spectra as a validation test. The new fully automated determinations were found to be in good agreement with these previous measurements. Conclusions. Our results show that an automated search based on cloud-contour morphology can be efficient and that this novel technique may be extended to wider regions of the Milky Way and at larger distance. We discuss its limitations and potential improvements after combination with other techniques.
Abstract. In tropical regions, the fresh water flux entering the ocean originates primarily from precipitation and, to a lesser extent when considering basin scale averages, from continental rivers. Nevertheless, at regional scale, river flows can have a significant impact on the surface ocean dynamics. Riverine fresh water modifies salinity, and therefore density, stratification and circulation. With its particular coastline, relatively high cumulative river discharge, and the vicinity of Inter Tropical Convergence Zone (ITCZ), the eastern Southern North Tropical Atlantic (e-SNTA) region off Northwest Africa is a particularly interesting location to study the linkage between precipitations, river outflows and Sea Surface Salinity (SSS). Here we focus on the regional e-SNTA SSS seasonal cycle and interannual variability. We quantify the impact of river runoff and precipitation on SSS by means of regional simulations forced by different interannual and climatological river runoffs and precipitation products. The simulated SSS are compared with the Climate Change Initiative (CCI) SSS, in situ SSS from Argo, ships and a coastal mooring, and the GLORYS reanalysis SSS. The analysis of the salinity balance in the mixed layer is conducted to explore the dynamics influencing the SSS variability. Overall, the simulations reproduce well the seasonal cycle and interannual variability despite a positive mean model bias north of 15N. The seasonal cycle is impacted by the phasing of the different runoff products. The mixed layer SSS decrease during the rainy season is mainly driven by precipitation followed by runoff by means of horizontal advection and partly compensated by vertical mixing. In terms of interannual anomalies, river runoffs have a more direct impact on SSS than precipitation. This study highlights the importance of properly constraining river runoff and precipitation to simulate realistic SSS, and the importance of observing SSS in coastal regions to validate such constraints.
Two L-Band (1.4GHz) microwave radiometer missions, Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP), currently provide sea-surface salinity (SSS) measurements. At this frequency, salinity is measured in the first centimetre below the sea surface, which makes it very sensitive to the presence of fresh water lenses linked to rain events. A relationship between salinity anomaly (ΔS) and rain rate (RR) is derived in the Pacific intertropical convergence zone from SMOS and SMAP SSS measurements, and the RR from the Special Sensor Microwave Imager/Sounder (SSMIS). We look at the robustness of the relationship in various areas. It is then used to estimate RR from SMOS and SMAP SSS measurements. By applying this algorithm over the global ocean between 30°S and 30°N, we found that the rain imprint is the dominant factor affecting SMOS and SMAP variability at small temporal scale, except in river plumes (Amazon, Mississippi, etc.) and in regions with high mesoscale variability. Our study allows to identify the observed difference between Argo products and satellite salinity that are due to the impact of rain on the satellite salinity in the first centimetre measured.
The variability observed on SMOS (Soil Moisture and Ocean Salinity) SSS (sea surface salinity) recorded in 2010 and 2011 is partly attributable to geophysical variations but also to imperfections in various corrections (e.g. sun aliases, sea surface scattering of the galactic signal). We perform a retrieval of bistatic coefficients from SMOS Tbs, suggesting more peaked coefficients than the ones currently used for simulating the galactic contribution.
Three-dimensional (3D) maps of Galactic interstellar dust are a tool for a wide range of uses. We aim to construct 3D maps of dust extinction in the Local Arm and surrounding regions. Gaia EDR3 photometric data were combined with 2MASS measurements to derive extinction towards stars with accurate photometry and relative uncertainties on parallaxes of less than 20%. We applied our hierarchical inversion algorithm adapted to inhomogeneous spatial distributions of target stars to this catalogue of extinctions. We present the updated 3D dust extinction distribution and provide an estimate of the error on integrated extinctions from the Sun to each area in the 3D map. The computational area is similar to the one of the previous DR2 map, a 6 kpc x 6 kpc x 0.8 kpcAstrophysics volume around the Sun. Due to the addition of fainter target stars, the volume in which the clouds can be reconstructed has increased. Due to the improved accuracy of the parallaxes and photometric data in EDR3, extinctions among neighbouring targets are more consistent, allowing one to reach an increased contrast in the dense areas, while cavity contours are more regular. We show several comparisons with recent results on dust and star distributions. The wavy pattern around the Plane of the dust concentrations is better seen and exists over large regions. Its mean vertical peak-to-peak amplitude is of the order of 300 pc; interestingly, it is similar to the vertical period of the spectacular snail-shaped stellar kinematical pattern discovered in Gaia data. The Gaia EDR3 catalogue allows for a significant improvement of the extinction maps to be made and the hierarchical technique confirms its efficiency for massive datasets. Future comparisons between 3D maps of interstellar matter and stellar distributions may help to understand which mergers or internal perturbations have shaped the Galaxy within the first 3 kpc.