Sorcin is a 22 kD calcium-binding protein that is found in a wide variety of cell types, such as heart, muscle, brain and adrenal medulla. It belongs to the penta-EF-hand (PEF) protein family, which contains five EF-hand motifs that associate with membranes in a calcium-dependent manner. Prototypic members of this family are the calcium-binding domains of calpain, such as calpain dVI. Full-length human sorcin has been crystallized in the absence of calcium and the structure determined at 2.2 A resolution. Apart from an extended N-terminal portion, the sorcin molecule has a globular shape. The C-terminal domain is predominantly alpha-helical, containing eight alpha-helices and connecting loops incorporating five EF hands. Sorcin forms dimers through the association of the unpaired EF5, confirming this as the mode of association in the dimerization of PEF proteins. Comparison with calpain dVI reveals that the general folds of the individual EF-hand motifs are conserved, especially that of EF1, the novel EF-hand motif characteristic of the family. Detailed structural comparisons of sorcin with other members of PEF indicate that the EF-hand pair EF1-EF2 is likely to correspond to the two physiologically relevant calcium-binding sites and that the calcium-induced conformational change may be modest and localized within this pair of EF-hands. Overall, the results derived from the structural observations support the view that, in sorcin, calcium signaling takes place through the first pair of EF-hands.
Matrix metalloproteinases (MMPs) are implicated in diseases such as arthritis and cancer. Among these enzymes, stromelysin-1 can also activate the proenzymes of other MMPs, making it an attractive target for pharmaceutical design. Isothermal titration calorimetry (ITC) was used to analyze the binding of three inhibitors to the stromelysin catalytic domain (SCD). One inhibitor (Galardin) uses a hydroxamic acid group (pKa ≅ 8.7) to bind the active site zinc; the others (PD180557 and PD166793) use a carboxylic acid group (pKa ≅ 4.7). Binding affinity increased dramatically as the pH was decreased over the range 5.5−7.5. Experiments carried out at pH 6.7 in several different buffers revealed that approximately one and two protons are transferred to the enzyme−inhibitor complexes for the hydroxamic and carboxylic acid inhibitors, respectively. This suggests that both classes of inhibitors bind in the protonated state, and that one amino acid residue of the enzyme also becomes protonated upon binding. Similar experiments carried out with the H224N mutant gave strong evidence that this residue is histidine 224. ΔG, ΔH, ΔS, and ΔCp were determined for the three inhibitors at pH 6.7, and ΔCp was used to obtain estimates of the solvational, translational, and conformational components of the entropy term. The results suggest that: (1) a polar group at the P1 position can contribute a large favorable enthalpy, (2) a hydrophobic group at P2' can contribute a favorable entropy of desolvation, and (3) P1' substituents of certain sizes may trigger an entropically unfavorable conformational change in the enzyme upon binding. These findings illustrate the value of complete thermodynamic profiles generated by ITC in discovering binding interactions that might go undetected when relying on binding affinities alone.
The tenth human fibronectin type three domain ((10)Fn3) is a small (10 kDa), extremely stable and soluble protein with an immunoglobulin-like fold, but without cysteine residues. Selections from (10)Fn3-based libraries of proteins with randomized loops have yielded high-affinity, target-specific antibody mimics. However, little is known about the biophysical properties of such antibody mimics, which will determine their suitability for in vitro and medical applications. We characterized target binding and biophysical properties of two related (10)Fn3-based antibody mimics that bind vascular endothelial growth factor receptor two (VEGF-R2). The first antibody mimic, which has a dissociation constant (K(d)) of 13 nM, is highly stable [melting temperature (T(m))=62 degrees C] and soluble, whereas the second, which binds VEGF-R2 with 40 x higher affinity, is less stable (T(m) < 40 degrees C) and relatively insoluble. We used our understanding of these two (10)Fn3 derivatives and of wild-type (10)Fn3 structure to engineer the next generation of antibody mimics, which have an improved combination of high affinity (K(d)=0.59 nM), stability (T(m)=53 degrees C) and solubility. Our findings illustrate that (10)Fn3-based antibody mimics can be engineered for favorable biophysical properties even when 20% of the wild-type (10)Fn3 sequence is mutated in order to satisfy target-binding requirements.
Abstract Assembly of double‐stranded DNA viruses and bacteriophages involves the polymerization of several hundred molecules of coat protein, directed by an internal scaffolding protein. A 163‐amino acid carboxyl‐terminal fragment of the 303‐amino acid bacteriophage P22 scaffolding protein was cloned, over‐expressed, and purified. This fragment is active in procapsid assembly reactions in vitro. The circular dichroism spectrum of the fragment, as well as the 1D‐NMR and 15 N‐ 1 H HSQC spectra of the uniformly‐labeled protein, indicate that stable secondary structure elements are present. Determination of the three dimensional packing of these elements into the folded scaffolding protein fragment is underway. Structure‐based drug design targeted at structural proteins required for viral assembly may have potential as a therapeutic strategy.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.