Resilience as a concept has found its way into different disciplines to describe the ability of an individual or system to withstand and adapt to changes in its environment. In this paper, we provide an overview of the concept in different communities and extend it to the area of mechanical engineering. Furthermore, we present metrics to measure resilience in technical systems and illustrate them by applying them to load-carrying structures. By giving application examples from the Collaborative Research Centre (CRC) 805, we show how the concept of resilience can be used to control uncertainty during different stages of product life.
The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
Buckling of slender bars subject to axial compressive loads represents a critical design constraint for light-weight truss structures. Active buckling control by actuators provides a possibility to increase the maximum bearable axial load of individual bars and, thus, to stabilize the truss structure.For reasons of cost, it is in general not economically viable to use such actuators in each bar of the truss structure. Hence, it is an important practical question where to place these active bars. Optimized structures, especially when coupled with active elements to further decrease the number of necessary bars, however, lead to designs, which, while cost-efficient, are especially prone to bardamages, caused, e.g., by material failures. Therefore, this paper presents a mathematical optimization approach to optimally place active bars for buckling control in a way that secures both buckling and general stability constraints even after failure of any combination of a certain number of bars. This allows us to increase the resilience of the system and guarantee stable behavior even in case of failures.
Branch-and-bound (B&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks. The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries—by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.
The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.