Abstract Purpose The radiologists’ workload is increasing, and computational imaging techniques may have the potential to identify visually unequivocal lesions, so that the radiologist can focus on equivocal and critical cases. The purpose of this study was to assess radiomics versus dual-energy CT (DECT) material decomposition to objectively distinguish visually unequivocal abdominal lymphoma and benign lymph nodes. Methods Retrospectively, 72 patients [ m , 47; age, 63.5 (27–87) years] with nodal lymphoma ( n = 27) or benign abdominal lymph nodes ( n = 45) who had contrast-enhanced abdominal DECT between 06/2015 and 07/2019 were included. Three lymph nodes per patient were manually segmented to extract radiomics features and DECT material decomposition values. We used intra-class correlation analysis, Pearson correlation and LASSO to stratify a robust and non-redundant feature subset. Independent train and test data were applied on a pool of four machine learning models. Performance and permutation-based feature importance was assessed to increase the interpretability and allow for comparison of the models. Top performing models were compared by the DeLong test. Results About 38% (19/50) and 36% (8/22) of the train and test set patients had abdominal lymphoma. Clearer entity clusters were seen in t-SNE plots using a combination of DECT and radiomics features compared to DECT features only. Top model performances of AUC = 0.763 (CI = 0.435–0.923) were achieved for the DECT cohort and AUC = 1.000 (CI = 1.000–1.000) for the radiomics feature cohort to stratify visually unequivocal lymphomatous lymph nodes. The performance of the radiomics model was significantly ( p = 0.011, DeLong) superior to the DECT model. Conclusions Radiomics may have the potential to objectively stratify visually unequivocal nodal lymphoma versus benign lymph nodes. Radiomics seems superior to spectral DECT material decomposition in this use case. Therefore, artificial intelligence methodologies may not be restricted to centers with DECT equipment.
Ziel dieser Studie war es, die diagnostische Genauigkeit der Jod- und Fettquantifizierung im Hinblick auf die Differenzierung von Nebennierenadenomen und -metastasen unter Verwendung der Dual-Source Dual-Energy Computertomografie (DECT) zu untersuchen.
To compare radiation dose and image quality of single-energy (SECT) and dual-energy (DECT) head and neck CT examinations performed with second- and third-generation dual-source CT (DSCT) in matched patient cohorts.200 patients (mean age 55.1 ± 16.9 years) who underwent venous phase head and neck CT with a vendor-preset protocol were retrospectively divided into four equal groups (n = 50) matched by gender and BMI: second (Group A, SECT, 100-kV; Group B, DECT, 80/Sn140-kV), and third-generation DSCT (Group C, SECT, 100-kV; Group D, DECT, 90/Sn150-kV). Assessment of radiation dose was performed for an average scan length of 27 cm. Contrast-to-noise ratio measurements and dose-independent figure-of-merit calculations of the submandibular gland, thyroid, internal jugular vein, and common carotid artery were analyzed quantitatively. Qualitative image parameters were evaluated regarding overall image quality, artifacts and reader confidence using 5-point Likert scales.Effective radiation dose (ED) was not significantly different between SECT and DECT acquisition for each scanner generation (p = 0.10). Significantly lower effective radiation dose (p < 0.01) values were observed for third-generation DSCT groups C (1.1 ± 0.2 mSv) and D (1.0 ± 0.3 mSv) compared to second-generation DSCT groups A (1.8 ± 0.1 mSv) and B (1.6 ± 0.2 mSv). Figure-of-merit/contrast-to-noise ratio analysis revealed superior results for third-generation DECT Group D compared to all other groups. Qualitative image parameters showed non-significant differences between all groups (p > 0.06).Contrast-enhanced head and neck DECT can be performed with second- and third-generation DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method.Differences in radiation dose between SECT and DECT of the dose-vulnerable head and neck region using DSCT systems have not been evaluated so far. Therefore, this study directly compares radiation dose and image quality of standard SECT and DECT protocols of second- and third-generation DSCT platforms.
We aimed to identify hepatocellular carcinoma (HCC) patients who will respond to repetitive transarterial chemoembolization (TACE) to improve the treatment algorithm. Retrospectively, 61 patients (mean age, 65.3 years ± 10.0 [SD]; 49 men) with 94 HCC mRECIST target-lesions who had three consecutive TACE between 01/2012 and 01/2020 were included. Robust and non-redundant radiomics features were extracted from the 24 h post-embolization CT. Five different clinical TACE-scores were assessed. Seven different feature selection methods and machine learning models were used. Radiomics, clinical and combined models were built to predict response to TACE on a lesion-wise and patient-wise level as well as its impact on overall-survival prognostication. 29 target-lesions of 19 patients were evaluated in the test set. Response rates were 37.9% (11/29) on the lesion-level and 42.1% (8/19) on the patient-level. Radiomics top lesion-wise response prognostications was AUC 0.55-0.67. Clinical scores revealed top AUCs of 0.65-0.69. The best working model combined the radiomic feature LargeDependenceHighGrayLevelEmphasis and the clinical score mHAP_II_score_group with AUC = 0.70, accuracy = 0.72. We transferred this model on a patient-level to achieve AUC = 0.62, CI = 0.41-0.83. The two radiomics-clinical features revealed overall-survival prognostication of C-index = 0.67. In conclusion, a random forest model using the radiomic feature LargeDependenceHighGrayLevelEmphasis and the clinical mHAP-II-score-group seems promising for TACE response prognostication.
Monoenergetic imaging is an increasingly used reconstruction technique in postprocessing of dual-energy computed tomography (DECT). The main advantage of this technique is the ability to substantially increase image contrast of structures with uptake of iodinated contrast material. Although monoenergetic imaging was mainly used in oncological DECT applications, recent research has further demonstrated its role in vascular imaging. Using this dedicated postprocessing algorithm, image contrast of vascular structures in the thorax can be increased, a drastic reduction of contrast material is feasible, and even beam-hardening artifacts can be reduced. The aim of this review article is to explain the technical background of this technique, showcase its relevance in cardiothoracic DECT, and provide an outlook on the clinical impact of this technique beyond solely improvements in image quality.