The eggs of black widow spider (L. tredecimguttatus) have been demonstrated to be rich in toxic proteinaceous components. The study on such active components is of theoretical and practical importance. In the present work, using a combination of multiple biochemical and biological strategies, we isolated and characterized the proteinaceous components from the aqueous extract of the black widow spider eggs. After gel filtration of the egg extract, the resulting main protein and peptide peaks were further fractionated by ion exchange chromatography and reversed-phase high performance liquid chromatography. Two proteinaceous components, named latroeggtoxin-III and latroeggtoxin-IV, respectively, were purified to homogeneity. Latroeggtoxin-III was demonstrated to have a molecular weight of about 36 kDa. Activity analysis indicated that latroeggtoxin-III exhibited neurotoxicity against cockroaches but had no obvious effect on mice, suggesting that it is an insect-specific toxin. Latroeggtoxin-IV, with a molecular weight of 3.6 kDa, was shown to be a broad-spectrum antibacterial peptide, showing inhibitory activity against all five species of bacteria tested, with the highest activity against Staphylococcus aureus. Finally, the implications of the proteinaceous toxins in egg protection and their potential applications were analyzed and discussed.
Abstract Interacting with proteins is a crucial way for long noncoding RNAs (lncRNAs) to exert their biological responses. Here we report a high throughput strategy to characterize lncRNA interacting proteins in vivo by combining tobramycin affinity purification and mass spectrometric analysis (TOBAP-MS). Using this method, we identify 140 candidate binding proteins for lncRNA highly upregulated in liver cancer (HULC). Intriguingly, HULC directly binds to two glycolytic enzymes, lactate dehydrogenase A (LDHA) and pyruvate kinase M2 (PKM2). Mechanistic study suggests that HULC functions as an adaptor molecule that enhances the binding of LDHA and PKM2 to fibroblast growth factor receptor type 1 (FGFR1), leading to elevated phosphorylation of these two enzymes and consequently promoting glycolysis. This study provides a convenient method to study lncRNA interactome in vivo and reveals a unique mechanism by which HULC promotes Warburg effect by orchestrating the enzymatic activities of glycolytic enzymes.
Pathological complete response (pCR) is the goal of neoadjuvant chemotherapy (NAC) for the HER2-positive and triple-negative subtypes of breast cancer and is related to survival benefit; however, luminal breast cancer is not sensitive to NAC, and the size of tumor shrinkage is a more meaningful clinical indicator for the luminal breast cancer subtype. We wanted to use a nomogram or formula to develop and implement a series of prediction models for pCR or tumor shrinkage size.We developed a prediction model in a primary cohort consisting of 498 patients with invasive breast cancer, and the data were gathered from July 2016 to September 2018. The endpoint was pCR and tumor shrinkage size. In the primary cohort, the HER2-positive cohort, and the triple-negative cohort, multivariate logistic regression analysis was used to screen the significant clinical features and clinicopathological features to develop nomograms. In the luminal group, multivariate linear regression analysis was used to test the risk factors that affect tumor shrinkage size. The area under the receiver operating characteristic curve (AUC) and calibration curves were adopted to evaluate and analyze the discrimination and calibration ability of nomograms. Furthermore, we also performed internal validation and independent validation in the primary cohort.ER status, KI67 status, HER2 status, number of NAC cycles, and tumor size were independent predictive factors of pCR in the primary cohort. These indicators had good discrimination and calibration in the primary and validation cohorts (AUC: 0.873, 0.820). The nomogram for HER2-positive and triple-negative breast cancer (TNBC) had an AUC of 0.820 and 0.785, respectively. Both the HER2 positive and TNBC nomogram calibration curves indicated significant agreement. Moreover, the luminal subtype prediction model was Y (tumor shrinkage size) = -0.576 × (age at diagnosis) + 2.158 × (number of NAC cycles) + 0.233 × (pre-NAC tumor size) + 51.662.Utilizing this predictive model will enable us to identify patients at high probability for pCR after NAC. Clinicians can stratify these patients and make individualized and personalized recommendations for therapy.
MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer. The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of gastric cancer. Here we show that miR-181a levels were significantly downregulated in gastric cancer tissues compared with the adjacent normal regions in 80 paired samples. Moreover, the lower levels of miR-181a were associated with the pM or pTNM stage in clinical gastric cancer patients. In addition, the ectopic expression of miR-181a in the gastric cancer cell line HGC-27 inhibited cell proliferation, cell migration, and invasion by directly interacting with the mRNA encoding the oncogenic factor Prox1. Taken together, our results indicate that miR-181a might act as a tumor suppressor in gastric cancer, which may provide a novel diagnostic and therapeutic option for human gastric cancer in the near future.
m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.
Abstract. The applicability of near-infrared (NIR) spectroscopy combined with chemometrics was explored in this study to develop rapid, low-cost and non-destructive spectroscopic methods for quantification of amylose in milled rice. The optimal results are concluded based on the comparison between the results of diffuse transmission, diffuse transmission attenuation, and diffuse transmission light compensation.The rice samples were scanned using near infrared transmittance spectrometry over the wavelengths of 900-1700 nm before the physical and chemical experiments. The PLS prediction results (Rpre ) for diffuse transmission, diffuse transmission attenuation and diffuse transmission light compensation were0.9049,0.9139,0.9577,respectively.The RMSEP (and T-test(p=0.05)) were 1.5654%(0.59), 1.5337%(0.64),1.4261 (-0.51),correspondingly. The use of diffuse transmission light compensation has proved to be feasible to predict amylose content, which also significantly improved the accuracy of the model.
Gallbladder cancer (GBC) is a highly malignant tumor with extremely poor prognosis. Previous studies have suggested that the carcinogenesis and progression of GBC is a multi-stage and multi-step process, but most of them focused on the genome changes. And a few studies just compared the transcriptome differences between tumor tissues and adjacent noncancerous tissues. The transcriptome changes, relating to every stage of GBC evolution, have rarely been studied. We selected three cases of normal gallbladder, four cases of gallbladder with chronic inflammation induced by gallstones, five cases of early GBC, and five cases of advanced GBC, using next-generation RNA sequencing to reveal the changes in mRNAs and lncRNAs expression during the evolution of GBC. In-depth analysis of the sequencing data indicated that transcriptome changes from normal gallbladder to gallbladder with chronic inflammation were distinctly related to inflammation, lipid metabolism, and sex hormone metabolism; transcriptome changes from gallbladder with chronic inflammation to early GBC were distinctly related to immune activities and connection between cells; and the transcriptome changes from early GBC to advanced GBC were distinctly related to transmembrane transport of substances and migration of cells. Expression profiles of mRNAs and lncRNAs change significantly during the evolution of GBC, in which lipid-based metabolic abnormalities play an important promotive role, inflammation and immune activities play a key role, and membrane proteins are very highlighted molecular changes.
Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.