Because of the high cost and safety of ultra-high magnetic resonance imaging (MRI), its application has certain limitations. Whereas 0.5−3 T MRI has been widely applied in hospitals, static magnetic fields (SMFs) have been shown to improve mice mental health and have anti-tumor potentials. Here, we compared the effects of the upward and downward 150 mT SMF groups with the sham group on C57BL/6J adult female mice. Locomotor and exploratory activity were also measured by behavioral tests, including the open field and elevated plus test. Additionally, physiology, pathology indicators and gut microbiota were examined. We found that 150 mT SMFs long-term exposure enhanced locomotive and exploratory activity of mice, especially the downward 150 mT SMF. Compared with the downward 150 mT SMF group, the movement speed and distance in the center area of the sham group were increased by 65.99% (p < 0.0001) and 68.58% (p = 0.0038), respectively. Moreover, compared to the sham group, downward 150 mT SMF increased the number of entrances to the center area by 67.0% (p = 0.0082) and time in the center area by 77.12% (p = 0.0054). Additionally, we observed that upward 150 mT SMF improved the number of follicles (~2.5 times, p = 0.0325) and uterine glands through increasing the total antioxidant capacity and reducing lipid peroxidation level in mice. Gut microbiome analysis showed that 150 mT SMFs long-term exposure improved the microbiota abundance (Clostridium, Bifidobacterium, Ralstonia and Yaniella) in the genus level, which may affect metabolism, anxiety and behavior in adult female mice. Our results demonstrated that 150 mT SMFs long-term exposure not only had good biosafety, but also improved athletic performance, emotion and the function of ovarian, uterine and gut microbiota abundance in adult female mice, which unraveled the potential of moderate long-term SMF exposure in clinical applications.
Abstract Effects of non‐uniform upward (north) and downward (south) 300 mT static magnetic field (SMF) 14 days (24 h/day) treatment of Platycodon grandiflorum seeds on germination, seedling growth, enzyme activities, malondialdehyde (MDA) level and seedling chlorophyll content were investigated under laboratory conditions. Germination rate, index and potential from magnetically exposed Anhui and Hebei Platycodon grandiflorum seeds were significantly not affected ( p > 0.05), however, the values of these germination variables were notably higher in Anhui Platycodon grandiflorum seeds than Hebei seeds. Treatment of Hebei Platycodon grandiflorum seeds with 300 mT SMFs increased ( p < 0.05) the catalase (CAT), superoxide dismutase (SOD), α‐and β‐amylase activities and chlorophyll content significantly, the root length and MDA level of Anhui seeds were reduced, while the MDA level was had no obviously affect. The results suggest that non‐uniform upward 300 mT SMF had potential to active the antioxidant enzymes (catalase and superoxide dismutase) and hydrolytic enzymes (α‐and β‐amylase activities) and increase the chlorophyll content of Platycodon grandiflorus seeds under laboratory conditions.
Due to the serious side effects of chemotherapy drugs against lung cancer, and the antitumor properties and high safety of magnetic fields, the present study combined moderate or ultra‑high intensity statics magnetic fields (SMFs) with platycodin D (PD) to explore the antitumor efficiency and biosafety. The antitumor effects of PD with or without moderate and ultra‑high SMFs on A549 cells bearing mice were compared. Mouse body weight, food/water intake, hematology routine, blood biochemistry, tumor weight and tissues hematoxylin and eosin (H&E) staining were examined. Behavior was measured using the elevated plus maze, open field and vital signs tests. The combined targets of PD and SMFs were detected using RNA‑sequencing (RNA‑seq). The results showed that the antitumor effect of 22 Tesla (T) SMF group was 3.6‑fold higher compared with that of the 2 mg/kg PD group (tumor growth inhibition=10.08%), while the antitumor effect of 150 mT SMF was only 1.56‑fold higher compared with that of PD. Although PD reduced the food intake, there was no significant difference in body weight, water intake or food consumption among PD and SMF groups. Behavioral results indicated that PD ameliorated dysphoria in mice, but SMFs reduced this effect. However, no significant abnormalities were found in routine blood, blood biochemistry test, H&E staining or organ index, except renal index which was reduced by PD with or without SMFs. RNA‑sequencing (RNA‑seq) demonstrated that SMFs and PD synergistically targeted the expression of genes associated with tumor growth, inflammation and neurological disease. The present study showed the antitumor efficacy and biosafety of moderate or ultra‑high SMF combined with PD, which exhibited only few side effects in the treatment of lung cancer, thus supporting further research for the clinical application of magnetic fields.
Epigallocatechin-3-gallate (EGCG), an essential polyphenolic constituent found in tea leaves, possesses various potent biological activities. This research was undertaken to investigate the impact of EGCG against endoplasmic reticulum (ER) stress-mediated inflammation and to clarify the underlying molecular mechanism in type 2 diabetic kidneys. The male rats were randomized into four groups: normal, diabetic, low-dose EGCG, and high-dose EGCG. In type 2 diabetic rats, hyperglycemia and hyperlipidemia noticeably caused renal structural damage and dysfunction and aggravated ER stress. Meanwhile, sustained ER stress activated the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and then upregulated the contents of inflammatory cytokines in the diabetic kidney. Following supplementation with 40 mg/kg and 80 mg/kg EGCG, hyperglycemia, hyperlipidemia, and renal histopathological alterations and dysfunction were noticeably ameliorated; renal ER stress, NLRP3 inflammasome, and inflammatory response were markedly repressed in the EGCG treatment groups. In summary, the current study highlighted the renoprotective effects of EGCG in type 2 diabetes and its mechanisms are mainly associated with the repression of ER stress-mediated NLRP3 inflammasome overactivation.