Abstract Aim Evaluate the novel PolarX Cryoballoon in atrial fibrillation (AF) catheter ablation through a propensity-matched comparison with the Arctic Front Advance (AFA). The aim was also to identify cryoablation metrics that are predictive of successful pulmonary vein isolation (PVI) with the PolarX Cryoballoon. Methods and results This prospective multi-centre study included patients that underwent cryoablation for AF. All patients underwent PVI with reconnection assessed after a 30-min waiting period and adenosine. Safety, efficacy, and cryoablation metrics were compared between PolarX and a propensity-matched AFA cohort. Seventy patients were included with 278 veins treated. In total, 359 cryoablations were performed (1.3 ± 0.6 per vein) to achieve initial PVI with 205 (73.7%) veins isolating with a single cryoablation. Independent predictors for achieving initial PVI included temperature at 30 s [odds ratio (OR) 1.26; P = 0.003] and time to reach −40°C (OR 1.88; P < 0.001) with an optimal cut-off of ≤−38.5°C at 30 s [area under the curve (AUC) 0.79; P < 0.001] and ≤−40°C at ≤32.5 s (AUC 0.77; P < 0.001), respectively. Of the 278 veins, 46 (16.5%) veins showed acute reconnection. Temperature at 30 s (≤−39.5°C, OR 1.24; P = 0.002), nadir temperature (≤−53.5°C, OR 1.35; P = 0.003), and time to isolation (≤38.0 s, OR 1.18; P = 0.009) were independent predictors of sustained PVI. Combining two of these three targets was associated with reconnection in only 2–5% of PVs. Efficacy and safety of the PolarX Cryoballoon were comparable to AFA Cryoballoon, however, cryoablation metrics were significantly different. Conclusions The PolarX Cryoballoon has a different cryoablation profile to AFA Cryoballoon. Prospective testing of these proposed targets in large outcomes studies is required.
To investigate the impact of variant pulmonary vein (PV) anatomy and the use of three-dimensional image integration (3D-II) on long-term efficacy of catheter ablation for atrial fibrillation (AF). Consecutive procedures from 2002 to 2007 were analysed from a prospective database. All patients underwent wide area circumferential ablation, with linear lesions added and complex fractionated electrograms targeted for persistent AF. Imaging was segmented on Carto to assess PV anatomy. Three hundred and fifty patients underwent 1.9 ± 0.9 procedures. The mean age was 57 ± 11 years, 73% males, and 55% paroxysmal AF. Freedom from AF/atrial tachycardia was 42% for paroxysmal AF and 20% for persistent AF at 3.1 years after the first procedure, or 86 and 66%, respectively, at 2.5 years after the last procedure. The Kaplan–Meier analysis showed a trend towards improved single-procedure efficacy with 3D-II (8.9% difference, P = 0.087) and a reduction in the number of procedures per patient from 2.1 ± 1.1 to 1.8 ± 0.9 (P < 0.0001). The use of 3D-II improved single-procedure efficacy with Carto (13.3% difference, P = 0.018), but not with Ensite NavX. Variant PV anatomy was identified in 28% and was associated with a lower single-procedure efficacy (10.0% difference, P = 0.024) but with no effect on final outcome. Multivariate analysis confirmed the impact of 3D-II [hazard ratio (HR) for recurrence of AF 0.67, P = 0.020] and variant PV anatomy (HR 1.37, P = 0.044). The use of 3D-II improves single-procedure efficacy of PV isolation for AF. Variant PV anatomy was associated with a lower single-procedure success rate.
The Heliostar™ ablation system is a novel RF balloon ablation technology with an integrated three-dimensional mapping system. Here, we describe our early experience and procedural outcomes using this technology for atrial fibrillation catheter ablation.
Coronary compromise is a serious potential complication following catheter ablation; however, procedural details in the literature are often lacking, preventing the identification of learning opportunities.We report two cases of right coronary compromise following catheter ablation for symptomatic supraventricular tachycardia. After radiofrequency energy delivery at the coronary sinus ostium in both cases, inferior lead ST-elevation was observed. Diagnostic coronary angiography identified an occluded posterior left ventricular branch of the coronary artery, and optical coherence tomography demonstrated a high thrombus burden at this location. Electrocardiographic ST-segments settled with implantation of a drug-eluting stent.Coronary compromise was likely secondary to energy delivery during catheter ablation. This case series highlights the need for electrophysiologist to understand coronary anatomy relative to anatomical landmarks, to anticipate the risk of vascular injury as physical distance from the site of ablation is likely important. Risk for coronary compromise, while a rare complication, needs to be discussed with patients during the consenting process. We also demonstrate the importance of an efficient multi-disciplinary team process for managing acute procedural complications.
Abstract K ATP channels in the vasculature composed of Kir6.1 regulate vascular tone and may contribute to the pathogenesis of endotoxemia. We used mice with cell-specific deletion of Kir6.1 in smooth muscle (smKO) and endothelium (eKO) to investigate this question. We found that smKO mice had a significant survival disadvantage compared with their littermate controls when treated with a sub-lethal dose of lipopolysaccharide (LPS). All cohorts of mice became hypotensive following bacterial LPS administration; however, mean arterial pressure in WT mice recovered to normal levels, whereas smKO struggled to overcome LPS-induced hypotension. In vivo and ex vivo investigations revealed pronounced cardiac dysfunction in LPS-treated smKO, but not in eKO mice. Similar results were observed in a cecal slurry injection model. Metabolomic profiling of hearts revealed significantly reduced levels of metabolites involved in redox/energetics, TCA cycle, lipid/fatty acid and amino acid metabolism. Vascular smooth muscle-localised K ATP channels have a critical role in the response to systemic infection by normalising cardiac function and haemodynamics through metabolic homeostasis. Key messages • Mice lacking vascular K ATP channels are more susceptible to death from infection. • Absence of smooth muscle K ATP channels depresses cardiac function during infection. • Cardiac dysfunction is accompanied by profound changes in cellular metabolites. • Findings from this study suggest a protective role for vascular K ATP channels in response to systemic infection.
Systemic arterial hypertension has been previously suggested to develop as a compensatory condition when central nervous perfusion/oxygenation is compromised. Principal sympathoexcitatory C1 neurons of the rostral ventrolateral medulla oblongata (whose activation increases sympathetic drive and the arterial blood pressure) are highly sensitive to hypoxia, but the mechanisms of this O2 sensitivity remain unknown. Here, we investigated potential mechanisms linking brainstem hypoxia and high systemic arterial blood pressure in the spontaneously hypertensive rat. Brainstem parenchymal PO2 in the spontaneously hypertensive rat was found to be ≈15 mm Hg lower than in the normotensive Wistar rat at the same level of arterial oxygenation and systemic arterial blood pressure. Hypoxia-induced activation of rostral ventrolateral medulla oblongata neurons was suppressed in the presence of either an ATP receptor antagonist MRS2179 or a glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol, suggesting that sensitivity of these neurons to low PO2 is mediated by actions of extracellular ATP and lactate. Brainstem hypoxia triggers release of lactate and ATP which produce excitation of C1 neurons in vitro and increases sympathetic nerve activity and arterial blood pressure in vivo. Facilitated breakdown of extracellular ATP in the rostral ventrolateral medulla oblongata by virally-driven overexpression of a potent ectonucleotidase transmembrane prostatic acid phosphatase results in a significant reduction in the arterial blood pressure in the spontaneously hypertensive rats (but not in normotensive animals). These results suggest that in the spontaneously hypertensive rat, lower PO2 of brainstem parenchyma may be associated with higher levels of ambient ATP and l-lactate within the presympathetic circuits, leading to increased central sympathetic drive and concomitant sustained increases in systemic arterial blood pressure.