The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.
To properly manage the groundwater resources, it is necessary to analyze the impact of groundwater withdrawal on the groundwater level. In this study, a Long Short-Term Memory (LSTM) network was used to evaluate the groundwater level prediction performance and analyze the impact of the change in the amount of groundwater withdrawal from the pumping wells on the change in the groundwater level in the nearby monitoring wells located in Jeju Island, Korea. The Nash–Sutcliffe efficiency between the observed and simulated groundwater level was over 0.97. Therefore, the groundwater prediction performance of LSTM was remarkably high. If the groundwater level is simulated on the assumption that the future withdrawal amount is reduced by 1/3 of the current groundwater withdrawal, the range of the maximum rise of the groundwater level would be 0.06–0.13 m compared to the current condition. In addition, assuming that no groundwater is taken, the range of the maximum increase in the groundwater level would be 0.11–0.38 m more than the current condition. Therefore, the effect of groundwater withdrawal on the groundwater level in this area was exceedingly small. The method and results can be used to develop new groundwater withdrawal sources for the redistribution of groundwater withdrawals.
제주연안선 부근에 밀집된 육상양식장 배출구 주변 4개 해역(애월리, 행원리, 표선리, 일과리)에서 수질환경의 시공간적 변화에 영향을 미치는 요인을 파악하기 위해 2010년 2월부터 2011년 12월까지 격월로 총 12회 조사하였다. 주성분 분석 결과 조사해역에서 연중 영양염의 분포는 염분과의 관련성 없이 배출구로부터 공급되는 물질에 의해 영양염의 농도가 조절되어, 연안에서 외해역으로 갈수록 농도구배가 감소하는 특징을 나타냈다. 특히 용존무기질소의 경우는 배출구와 인접한 해역에서는 부영양상태로 인에 비해 질소가 과잉되고 있었다. 유기물의 분포는 담수유입량이 증가하는 고수온기에 증가하는 경향을 보였다. 식물플랑크톤의 생물량 변화는 애월 및 행원해역은 담수유입과 관련된 기상요인(기온 및 강우), 표선 및 일과는 영양염의 인위적 공급요인(양식장 배출수)에 의한 영향을 주로 받는 것으로 나타났다. 특히, 배출구로부터 직선거리 약 300 m 및 수심 10 m이내 해역의 표 저층에서는 고영양염 농도 분포가 지속되고 있어, 부영양화 과정에서 발생하는 문제를 직 간접적으로 받을 수 있는 가능성을 나타냈다. 육상양식장의 운영 시 취수지점이 배출수의 영향을 받는 지점에 위치할 경우 사육수질의 문제가 발생할 수 있다. This study investigated the temporal-spatial distribution and variations in water quality parameters (temperature, salinity, pH, DO, COD, SPM, DIN, DIP, silicate, TN, TP, and chlorophyll-a) in the coastal area of Jeju, Korea, adjacent to aquaculture ponds (Aewol-ri, Haengwon-ri, Pyosun-ri, and Ilkwa-ri). Data were collected bimonthly from February 2010 to December 2011. A principal component analysis (PCA) identified three major factors controlling variations in water quality during the sampling period. Aquaculture effluent water led to large changes in nutrient levels. The highest nutrient values were observed during the investigation period. The relatively large increase in organic matter at the sampling stations coupled with sea area runoff events during the summer rainy period. Variation in chlorophyll-a concentration was mainly driven by meteorological factors such as air temperature and rainfall in the coastal areas of Aewol and Haengwon. In the coastal areas of Pyosun and Ilkwa, pollution was caused by anthropogenic factors such as discharge of aquaculture effluent water. High nutrient concentrations at the majority of the coastal stations indicate eutrophication of coastal waters, especially within a distance of 300 m and depth of 10m from drainage channels. Coastal eutrophication driven by aquaculture effluent may be harmful inshore. Events such as eutrophication may potentially influence water pollution in aquaculture ponds when seawater intake is detected because of aquaculture effluent water.