Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices—ranging from seeds to blood—make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception—the vampire finch—which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia—bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.
Here, we describe the genome of Desulfobacter hydrogenophilus DSM 3380, a bacterium that belongs to the Desulfobacterales The genome of this strictly anaerobic bacterium capable of sulfate reduction expands our understanding of microbial sulfate reduction in a wide range of environmental conditions.
Here, we describe the genome of Desulfofundulus thermobenzoicus subsp. thermosyntrophicus DSM 14055, a member of the Clostridiales that is capable of sulfate reduction coupled to the oxidation of propionate, lactate, pyruvate, and H 2 /CO 2 . This genome expands our understanding of microbial sulfate reduction (MSR) in anaerobic methanogenic environments.
We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration.
Abstract The ability of aerobic microorganisms to regulate internal and external concentrations of the reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by microorganisms to degrade superoxide. SOD is not one, but three separate, non‐homologous enzymes that perform the same function. Thus, the evolutionary history of genes encoding for different SOD enzymes is one of convergent evolution, which reflects environmental selection brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic horizontal gene transfer (HGT). In this study, we examine the phylogenetic history of the protein sequence encoding for the nickel‐binding metalloform of the SOD enzyme (SodN). The genomic potential to produce SodN is widespread among bacteria, including Actinobacteriota (Actinobacteria), Chloroflexota (Chloroflexi), Cyanobacteria, Proteobacteria, Patescibacteria, and others. The gene is also present in many archaea, with Thermoplasmatota and Nanoarchaeota representing the vast majority of archaeal sodN diversity. A comparison of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including multiple inter‐domain transfers of the sodN gene from the bacterial domain to the archaeal domain. Nearly half of the archaeal members with sodN live in the photic zone of the marine water column. The sodN gene is widespread and characterized by apparent vertical gene transfer in some sediment‐ or soil‐associated lineages within the Actinobacteriota and Chloroflexota phyla, suggesting the ancestral sodN likely originated in one of these clades before expanding its taxonomic and biogeographic distribution to additional microbial groups in the surface ocean in response to decreasing iron availability. In addition to decreasing iron quotas, nickel‐binding SOD has the added benefit of withstanding high reactant and product ROS concentrations without damaging the enzyme, making it particularly well suited for the modern surface ocean.
ABSTRACT Here, we present genomes of three strains of Serratia initially isolated from suburban soil—one strain of S. ureilytica and two strains of S. quinivorans —resistant to multiple classes of antibiotics. This expands the genomic sampling of a group relevant to the ecosystem and human health.
We report the draft genome sequence of Ornatilinea apprima P3M-1, a strictly anaerobic member of the Chloroflexi class Anaerolineae. This genome provides insight into the diversity of metabolism within the Anaerolineae, and the evolution of respiration within the Chloroflexi.