Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.
Tau pathology is characterized by intracellular aggregates of abnormally and hyperphosphorylated tau proteins. It is encountered in many neurodegenerative disorders, but also in aging. These neurodegenerative disorders are referred to as tauopathies. Comparative biochemistry of the tau aggregates shows that they differ in both tau isoform phosphorylation and content, which enables a molecular classification of tauopathies. In conditions of dementia, NFD (neurofibrillary degeneration) severity is correlated to cognitive impairment and is often considered as neuronal death. Using tau animal models, analysis of the kinetics of tau phosphorylation, aggregation and neuronal death in parallel to electrophysiological and behavioural parameters indicates a disconnection between cognition deficits and neuronal cell death. Tau phosphorylation and aggregation are early events followed by cognitive impairment. Neuronal death is not observed before the oldest ages. A sequence of events may be the formation of toxic phosphorylated tau species, their aggregation, the formation of neurofibrillary tangles (from pre-tangles to ghost tangles) and finally neuronal cell death. This sequence will last from 15 to 25 years and one can ask whether the aggregation of toxic phosphorylated tau species is a protection against cell death. Apoptosis takes 24 h, but NFD lasts for 24 years to finally kill the neuron or rather to protect it for more than 20 years. Altogether, these data suggest that NFD is a transient state before neuronal death and that therapeutic interventions are possible at that stage.
Muscleblind-like-1 (MBNL1) is a splicing regulatory factor controlling the fetal-to-adult alternative splicing transitions during vertebrate muscle development. Its capture by nuclear CUG expansions is one major cause for type 1 myotonic dystrophy (DM1). Alternative splicing produces MBNL1 isoforms that differ by the presence or absence of the exonic regions 3, 5, and 7. To understand better their respective roles and the consequences of the deregulation of their expression in DM1, here we studied the respective roles of MBNL1 alternative and constitutive exons. By combining genetics, molecular and cellular approaches, we found that (i) the exon 5 and 6 regions are both needed to control the nuclear localization of MBNL1; (ii) the exon 3 region strongly enhances the affinity of MBNL1 for its pre-mRNA target sites; (iii) the exon 3 and 6 regions are both required for the splicing regulatory activity, and this function is not enhanced by an exclusive nuclear localization of MBNL1; and finally (iv) the exon 7 region enhances MBNL1-MBNL1 dimerization properties. Consequently, the abnormally high inclusion of the exon 5 and 7 regions in DM1 is expected to enhance the potential of MBNL1 of being sequestered with nuclear CUG expansions, which provides new insight into DM1 pathophysiology.
Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets.
Abstract: Pro‐ and anti‐apoptotic members of the Bcl‐2 family are fundamental in the control of apoptosis. Among them, Bax plays a key role in apoptosis induction by mediating the release of apoptogenic factors from mitochondria to the cytosol. In this report, we investigated, by immunohistofluorescence, the in vivo distribution of Bax in normal human epidermis before and 24 h after exposure to solar‐simulated radiation. Bax expression was evaluated with three different, Western blot pretested, anti‐Bax antibodies (Ab) and correlated with markers of keratinocyte differentiation and apoptosis using anti‐ β 1 integrin and anti‐active caspase‐3 Abs respectively. Using anti‐Bax N20 and A‐3533 polyclonal Ab, we found that, whereas undifferentiated keratinocytes of the basal proliferative compartment contained Bax in the cytosol, the differentiated suprabasal cells had Bax mainly in the nucleus. This immunoreactivity pattern was not modified by skin irradiation. Interestingly, the well known apoptosis‐related Bax redistribution to mitochondria in response to a cell death signal, could be detected only with yet another, the 2D2 monoclonal Ab. This relocalization occurred specifically in apoptotic, active caspase‐3 positive cells of irradiated epidermis. Our data highlight the differentiation‐ and apoptosis‐associated changes in the pattern of Bax subcellular and cellular distribution as uncovered by different anti‐Bax Abs and suggest that Bax undergoes successive activation that progresses in parallel with keratinocyte differentiation and apoptosis.
Sperm motility notably depends on the structural integrity of the flagellum and the regulation of microtubule dynamics. Although researchers have started to use “omics” techniques to characterize the human sperm's molecular landscape, the constituents responsible for the assembly, organization, and dynamics of the flagellum microtubule have yet to be fully defined. In this study, we defined a core set of 116 gene products associated with the human sperm microtubulome (including products potentially involved in abnormal ciliary phenotypes and male infertility disorders). To this end, we designed and applied an integrated genomics workflow and combined relevant proteomics, transcriptomics, and interactomics datasets to reconstruct a dynamic interactome map. By further integrating phenotypic information, we defined a disease-interaction network; this enabled us to highlight a number of novel factors potentially associated with altered sperm motility and male fertility. Lastly, we experimentally validated the expression pattern of two candidate genes (CUL3 and DCDC2C) that had never previously been associated with male germline differentiation. Our analysis suggested that CUL3 and DCDC2C’s products have important roles in the sperm flagellum. Taken as a whole, our results demonstrate that an integrated genomics strategy can highlight relevant molecular factors in specific sperm components. This approach could be easily extended by including other “omics” data (from asthenozoospermic men, for example) and identifying other critical proteins from the human sperm microtubulome.