Abstract T-cell Acute Lymphoblastic Leukemia (T-ALL) is a hematological malignancy in need of novel therapeutic approaches. Here, we identify the ATP-citrate lyase ACLY as overexpressed and as a novel therapeutic target in T-ALL. To test the effects of ACLY in leukemia progression, we developed an isogenic model of NOTCH1-induced Acly conditional knockout leukemia. Importantly, we observed intrinsic antileukemic effects upon loss of ACLY, which further synergized with NOTCH1 inhibition in vivo. Metabolomic profiling upon ACLY loss revealed a metabolic crisis with reduced acetyl-CoA levels, as well as a decreased oxygen consumption rate. Gene expression profiling analyses showed that the transcriptional signature of ACLY loss very significantly correlates with the signature of MYC loss in vivo . Mechanistically, the decrease in acetyl-CoA led to reduced H3K27ac levels in Myc , resulting in transcriptional downregulation of Myc and drastically reduced MYC protein levels. Interestingly, our analyses also revealed a reciprocal relationship whereby ACLY itself is a direct transcriptional target of MYC, thus establishing a feedforward loop that is important for leukemia progression. Overall, our results identified a relevant ACLY-MYC axis and unveiled ACLY as a novel promising target for T-ALL treatment.
The cell response to virus infection and virus perturbation of that response is dynamic and is reflected by changes in cell susceptibility to infection. In this study, we evaluated the response of human epithelial cells to sequential infections with human respiratory syncytial virus strains A2 and B to determine if a primary infection with one strain will impact the ability of cells to be infected with the second as a function of virus strain and time elapsed between the two exposures. Infected cells were visualized with fluorescent markers, and location of all cells in the tissue culture well were identified using imaging software. We employed tools from spatial statistics to investigate the likelihood of a cell being infected given its proximity to a cell infected with either the homologous or heterologous virus. We used point processes, K-functions, and simulation procedures designed to account for specific features of our data when assessing spatial associations. Our results suggest that intrinsic cell properties increase susceptibility of cells to infection, more so for RSV-B than for RSV-A. Further, we provide evidence that the primary infection can decrease susceptibility of cells to the heterologous challenge virus but only at the 16 h time point evaluated in this study. Our research effort highlights the merits of integrating empirical and statistical approaches to gain greater insight on in vitro dynamics of virus-host interactions.
Supplementary Figures 1-2 from Tyrosine Kinase Etk/BMX Is Up-regulated in Human Prostate Cancer and Its Overexpression Induces Prostate Intraepithelial Neoplasia in Mouse
We previously showed that targeted expression of non-receptor tyrosine kinase Etk/BMX in mouse prostate induces prostate intraepithelial neoplasia, implying a possible causal role of Etk in prostate cancer development and progression. Here, we report that Etk is upregulated in both human and mouse prostates in response to androgen ablation. Etk expression seems to be differentially regulated by androgen and interleukin 6 (IL-6), which is possibly mediated by the androgen receptor (AR) in prostate cancer cells. Our immunohistochemical analysis of tissue microarrays containing 112 human prostate tumor samples revealed that Etk expression is elevated in hormone-resistant prostate cancer and positively correlated with tyrosine phosphorylation of AR (Pearson correlation coefficient rho = 0.71, P < 0.0001). AR tyrosine phosphorylation is increased in Etk-overexpressing cells, suggesting that Etk may be another tyrosine kinase, in addition to Src and Ack-1, which can phosphorylate AR. We also showed that Etk can directly interact with AR through its Src homology 2 domain, and such interaction may prevent the association of AR with Mdm2, leading to stabilization of AR under androgen-depleted conditions. Overexpression of Etk in androgen-sensitive LNCaP cells promotes tumor growth while knocking down Etk expression in hormone-insensitive prostate cancer cells by a specific shRNA that inhibits tumor growth under androgen-depleted conditions. Taken together, our data suggest that Etk may be a component of the adaptive compensatory mechanism activated by androgen ablation in prostate and may play a role in hormone resistance, at least in part, through direct modulation of the AR signaling pathway.