Crown and bridge restorations are one of the main treatment methods in fixed prosthodontics. The fabrication requires data on the patient's denture shape. This information is generally obtained as a hard copy from an impression mold. Alternatively, one can acquire the data electronically using oral optical three-dimensional (3D) imaging techniques, which determine the surface of the denture. The aim of the study was to quantitatively compare the accuracy of three dimensional scanning with that of conventional impressions and give a statement how far the scanner provides a clinical alternative with equal or better precision. Data from 10 teeth were acquired in the dental office with a polyether impression material and an oral scanner. Data from the impressions were digitalized by means of micro computed tomography. The data were then 3D registered to identify the potential differences between impression and optical scan. We could demonstrate that the oral scanner's data and the conventional impressions are comparable.
Abstract Background Wear and corrosion at modular neck tapers in THA can lead to major clinical implications such as periprosthetic osteolysis, adverse local tissue reactions, or implant failure. The material degradation processes at the taper interface are complex and involve fretting corrosion, third-body abrasion, as well as electrochemical and crevice corrosion. One phenomenon in this context is imprinting of the head taper, where the initially smooth surface develops a topography that reflects the rougher neck taper profile. The formation mechanism of this specific phenomenon, and its relation to other observed damage features, is unclear. An analysis of retrieved implants may offer some insights into this process. Questions/purposes (1) Is imprinting related to time in situ of the implants and to the taper damage modes of corrosion and fretting? (2) Are implant design parameters like neck taper profile, stem material, or head seating associated with the formation of imprinting? (3) Is imprinting created by an impression of the neck taper profile or can a different mechanistic explanation for imprinting be derived? Methods Thirty-one THAs with cobalt-chromium-molybdenum-alloy (CoCrMo) heads retrieved between 2013 and 2019 at revision surgery from an institutional registry were investigated. Inclusion criteria were: 12/14 tapers, a head size of 36 mm or smaller, time in situ more than 1 year, and intact nonmodular stems without sleeve adaptors. After grouping the residual THAs according to stem type, stem material, and manufacturer, all groups of three or more were included. Of the resulting subset of 31 retrievals, nine THAs exhibited a still assembled head-neck taper connection. The median (range) time in situ was 5 years (1 to 23). Two stem materials (21 titanium-alloy and 10 stainless steel), three kinds of bearing couples (11 metal-on-metal, 13 metal-on-polyethylene, and seven dual-mobility heads), and two different neck taper profiles (six wavy profile and 25 fluted profile) were present in the collection. Four THAs exhibited signs of eccentric head seating. The 31 investigated THAs represented 21% of the retrieved THAs with a CoCrMo alloy head during the specified period. At the head tapers, the damage modes of corrosion, fretting, and imprinting were semiquantitatively rated on a scale between 0 (no corrosion/fretting/imprinting) and 3 (severe corrosion/fretting/imprinting). Corrosion and fretting were assessed applying the Goldberg score, with the modification that the scale started at 0 and not at 1. Imprinting was assessed with a custom scoring system. Rating was done individually at the proximal and distal head taper half and summed to one total damage score for each retrieval and damage mode. Correlations between the damage modes and time in situ and between the damage modes among each other, were assessed using the Spearman rank order correlation coefficient (ρ). Associations between imprinting and implant design parameters were investigated by comparing the total imprinting score distributions with the Mann-Whitney U-test. Metallographically prepared cross-sections of assembled head-neck taper connections were examined by optical microscopy and disassembled head and neck taper surfaces were assessed by scanning electron microscopy (SEM). Results The imprinting damage score increased with time in-situ (ρ = 0.72; p < 0.001) and the corrosion damage score (ρ = 0.63; p < 0.001) but not with the fretting damage score (ρ = 0.35; p = 0.05). There was no difference in total imprinting score comparing neck taper profiles or stem materials, with the numbers available. Eccentric head seating had elevated total imprinting score (median 6 [interquartile range 0]) compared with centric seating (median 1 [2]; p = 0.001). Light optical investigations showed that imprinting can be present on the head taper surfaces even if the depth of abraded material exceeds the neck taper profile height. SEM investigations showed bands of pitting corrosion in the imprinted grooves. Conclusion The microscopic investigations suggest that imprinting is not an independent phenomenon but a process that accompanies the continuous material degradation of the head taper surface because of circular damage on the passive layer induced by grooved neck tapers. Clinical Relevance Material loss from head-neck taper connections involving CoCrMo alloy heads is a source of metal ions and could potentially be reduced if hip stems with smooth neck tapers were used. Surgeons should pay attention to the exact centric seating of the femoral head onto the stem taper during joining of the parts.
Despite the low wear rate of ceramic–ceramic hip implants, hard-on-soft bearings remain the most commonly used bearings in North America and Western Europe. A major concern with ceramic–ceramic hip implants is the occurrence of squeaking phenomena, which are still not fully understood. Various factors are mentioned in the literature, but currently, studies mostly focus on only one specific parameter. The goal of this study was to systematically analyze four different factors (cup orientation, protein concentration of the test fluid, contact pressure and head roughness) that may influence the squeaking behavior of this bearing type. An in vitro simulation according to ISO 14242-1 was performed using an AMTI Vivo simulator, and acoustic signals were recorded. No squeaking occurred for any of the four parameters when bovine serum or water was used as the test fluid. Squeaking was observed only under dry conditions with the ceramic–ceramic bearing. Under dry conditions, the maximum resulting torque increased steadily, and squeaking occurred after approximately 300 cycles at a resulting torque of more than 22 Nm. Thus, the resulting torque might be one factor leading to squeaking and should be kept low to reduce the risk of squeaking.