In this study we have characterized the bumetanide-sensitive K+/Na+/Cl- cotransport in cultured rat cardiac myocytes. 1) It carries about 10% of the total K+ influx. 2) It is sensitive to furosemide (Ki0.5 = 10(-6)M) and bumetanide (Ki0.5 = 10(-7)M). 3) It is strongly dependent on the extracellular concentrations of Na+ and Cl-. 4) It carries out influx of both ions, K+ and Na+. A therapeutic concentration of ouabain (10(-7) M) stimulated the bumetanide-sensitive K+ influx (as measured by 86Rb+), in the cultured myocytes, with no effect on the bumetanide-resistant K+ influx, which was mediated mostly by the Na+/K+ pump. Stimulation of the bumetanide-sensitive Rb+ influx by a low ouabain concentration was strongly dependent on Na+ and Cl- in the extracellular medium. A low concentration of ouabain (10(-7) M) was found to increase the steady-state level of cytosolic Na+ by 15%. This increase was abolished by the addition of bumetanide or furosemide. These findings suggest that ouabain, at a low (10(-7) M) concentration, induced its positive inotropic effect in rat cardiac myocytes by increasing Na+ influx into the cells through the bumetanide-sensitive Na+/K+/Cl- cotransporter. In order to examine this hypothesis, we measured the effect of bumetanide on the increased amplitude of systolic cell motion induced by ouabain. Bumetanide or furosemide, added to cultured cardiac myocytes, inhibited the increased amplitude of systolic cell motion induced by ouabain. Neither bumetanide nor furosemide alone has any significant effect on the basal amplitude of systolic cell motion. We propose that stimulation of bumetanide-sensitive Na+ influx plays an essential role in the positive inotropic effect in rat cardiac myocytes induced by low concentration of ouabain.
A partially purified thymic factor, thymostimulin (TS), significantly increased the survival rate of adult, immune-intact mice infected with the neurotropic Mengo virus. TS treatment was begun after virus inoculation by daily i.p. injections. In untreated C57BL/6 mice, LD50 was reached with 1 X 10(4) PFU, but 10-fold more virus (i.e., 1 X 10(5) PFU) was needed to reach LD50 in TS-treated animals. TS effect on survival, though, could be observed with several virus doses (1 X 10(3) to 1 X 10(6) PFU) (p less than 0.001). A significant effect on survival was also observed with outbred ICR mice (p less than 0.005). Serum interferon (IFN) levels in the Mengo virus-infected mice were relatively low (average peak 300 U/ml), but were significantly increased (two- to ninefold) in the TS-treated mice. Peak serum levels were reached earlier in TS than in control animals (24 hr and 72 hr, respectively). Both acid-labile and acid-stable type I IFN production were augmented by TS in the Mengo virus-infected mice. Natural killer activity was also enhanced by TS, in particular on the second day after virus inoculation. In addition, MP-virus was used as a second, unrelated virus challenge. This virus caused a nonlethal infection, with relatively high levels of serum IFN (average peak 10,000 U/ml). TS increased IFN levels (two- to eight-fold) also in this challenge system. In conclusion, TS causes a nonspecific enhancement of endogenous production of IFN and has a significant effect on the survival of lethally infected mice. The data indicate a potential application of thymic factors for the treatment of viral infections.
Effects of ouabain on [Ca++]i and on contractility was measured in quin2 and fura2 loaded cultured neonatal rat cardiac myocytes. Addition of ouabain (5 x 10(-8) to 5 x 10(-6) M) to cultured myocytes exposed to balanced buffered salt solution (BSS) caused a transient increase in [Ca++]i, followed by slow oscillations for about 10 min, and by an elevated steady state level of [Ca++]i thereafter. Concentrations of ouabain between 10(-7) and 5 x 10(-7) M caused an increase in the amplitude of systolic motion (ASM) whereas concentrations above 10(-6) caused a decrease in the ASM, an increase in the beating frequency and an upward shift of the base line, indicating impaired relaxation. When ouabain was added to cardiac myocytes exposed to Ca++-free BSS the increase in [Ca++]i was not observed, but only a transient decrease. To investigate the effect of [K+]o on the ouabain-induced changes in [Ca++]i, ouabain was added to cells exposed to BSS containing low K+ concentration (1 mM instead of 5 mM in balanced BSS). In this medium the increase in ASM by ouabain was similar to that in balanced BSS. Addition of ouabain caused a transient decrease in [Ca++]i. There was no initial increase in [Ca++]i and the steady state level of [Ca++]i was not elevated as compared with the same cells before the addition of ouabain. Similar results were observed in cells loaded with quin2 or with fura2. In view of these results the mechanism of action of ouabain on cardiac myocytes is discussed.