Bacteria require high-efficiency uptake systems to survive and proliferate in nutrient-limiting environments, such as those found in host organisms. ABC transporters in the bacterial plasma membrane provide a mechanism for transport of many substrates. In this study, we examine an operon containing a periplasmic binding protein in Actinobacillus for its potential role in nutrient acquisition. The electron density map of 1.76 Å resolution obtained from the crystal structure of the periplasmic binding protein was best fit with a molecular model containing a pyridoxal-5'-phosphate (P5P/pyridoxal phosphate/the active form of vitamin B
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from
Abstract Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examined a heme acquisition system driven by hemophores called HphAs from several Gram-negative bacteria. Structural determination of HphAs revealed a N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The structure of these HphAs is strikingly similar to a novel hemophore discovered by Latham et al. (2019), named hemophilin 1 . The genetic organization of HphAs consist of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in E. coli cells and found that the efficient secretion of HphA is dependent on Slam. The TBDR also played an important role for heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria Together, these results show that HphA presents a new class of hemophores in Gram-negative bacteria and further expands the role of Slams in transporting soluble proteins supporting it role as a type 11 secretion system.
Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.
Abstract Cyr61 (CCN1) is the product of a growth factor–inducible immediate early gene and is involved in cell adhesion, survival, proliferation and differentiation. Cyr61 is overexpressed in human tumors and is involved in the development of tumors. However, the role that Cyr61 plays in acute lymphoblastic leukemia (ALL) cells remains undetermined. The aim of this study was to identify the role of Cyr61 in regulating ALL cell survival. Here, we found that the level of Cyr61 was increased in the plasma and bone marrow (BM) from ALL patients compared with samples from normal control patients. Furthermore, we observed that Cyr61 could effectively stimulate Jurkat (T ALL cell lines), Nalm-6 (B ALL cell lines) and primary ALL cell survival. Mechanistically, we showed that Cyr61 stimulated ALL cell survival via the AKT/NF-κB signaling pathways and the consequent up-regulation of Bcl-2. Taken together, our study is the first to reveal that Cyr61 is elevated in ALL and promotes cell survival through the AKT/NF-κB pathway by up-regulating Bcl-2. Our findings suggest that Cyr61 plays an important role in the pathogenesis of ALL.
Abstract Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC–MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
ABSTRACT Phages, plasmids, and other mobile genetic elements express inhibitors of CRISPR-Cas immune systems, known as anti-CRISPR proteins, to protect themselves from targeted destruction. These anti-CRISPRs have been shown to function through very diverse mechanisms. In this work we investigate the activity of an anti-CRISPR isolated from a prophage in Haemophilus parainfluenzae that blocks CRISPR-Cas9 DNA cleavage activity. We determine the three-dimensional crystal struture of AcrIIC4 and show that it binds to the Cas9 Recognition Domain. This binding does not prevent the Cas9-anti-CRISPR complex from interacting with target DNA but does inhibit DNA cleavage. AcrIIC4 likely acts by blocking the conformational changes that allow the HNH and RuvC endonuclease domains to contact the DNA sites to be nicked.
Abstract Bacteria require high efficiency uptake systems to survive and proliferate in nutrient limiting environments, such as those found in the host. The ABC transporters at the bacterial plasma membrane provide a mechanism for transport of many substrates. We recently demonstrated that an AfuABC operon, previously annotated as encoding a ferrous iron uptake system, is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for these metabolites. In this study, we examine a second operon containing a periplasmic binding protein discovered in Actinobacillus for its potential role in nutrient acquisition. Using electron density obtained from the crystal structure of the periplasmic binding protein we modeled a pyridoxal-5’-phosphate (P5P/PLP/Vitamin B 6 ) ligand into the atomic resolution electron density map. The identity of the Vitamin B 6 bound to this periplasmic binding protein was verified by isothermal titration calorimetry, microscale thermophoresis, and mass spectrometry, leading us to name the protein P5PA and the operon P5PAB. To illustrate the functional utility of this uptake system, we introduced the P5PAB operon from A. pleuropneumoniae into an E. coli K-12 strain that was devoid of a key enzyme required for Vitamin B 6 synthesis. The growth of this strain at low levels of Vitamin B 6 supports the role of this newly identify operon in Vitamin B 6 uptake.