Detrimental exposures in mothers are recognized as risk factors for the development of metabolic dysfunction in offspring. In contrast, maternal exercise has been reported to be an effective strategy to maintain offspring health. However, the mechanisms underlying the protective effects of maternal exercise on adult offspring metabolic homeostasis are largely unclear. This study aims to investigate whether maternal exercise before and during pregnancy could combat the adverse effects of maternal high-fat diet (HFD) on metabolism in 24-week-old male offspring and to explore the role of miRNAs in mediating the effects. Female C57BL/6 mice were fed with either control diet or HFD 3-week prior to breeding and throughout pregnancy and lactation, among whom half of the HFD-fed mice were submitted to voluntary wheel running training 3-week before and during pregnancy. Male offspring were sedentary and fed with a control diet from weaning to 24 weeks. Body weight, the content of inguinal subcutaneous adipose tissue and perirenal visceral adipose tissue, glucose tolerance, and serum insulin and lipids in offspring were analyzed. Hepatic tissues were collected for transcriptome and miRNA sequencing and reverse transcription-quantitative polymerase chain reaction validation. The results showed that maternal HFD resulted in significant glucose intolerance, insulin resistance, and dyslipidemia in adult offspring, which were negated by maternal exercise. Transcriptome sequencing showed that maternal exercise reversed perinatal HFD-regulated genes in adult offspring, which were enriched in glucose and lipid metabolic-related signaling pathways. At the same time, maternal exercise significantly rescued the changes in the expression levels of 3 hepatic miRNAs in adult offspring, and their target genes were involved in the regulation of cholesterol biosynthesis and epigenetic modification, which may play an important role in mediating the intergenerational metabolic regulation of exercise. Overall, our research pioneered the role of miRNAs in mediating the programming effects of maternal exercise on adult offspring metabolism, which might provide novel insight into the prevention and treatment of metabolic disorders in early life.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Despite the increasing prevalence rate of nonalcoholic fatty liver disease (NAFLD) worldwide, efficient pharmacotherapeutic regimens against NAFLD still need to be explored. Previous studies found that pioglitazone and metformin therapy could partly ameliorate NAFLD, but their combination therapy effects have not been researched. In the present study, we assessed the protective effects of metformin and pioglitazone combination therapy on liver lipid metabolism in high-fat diet (HFD)-fed mice and investigated the molecular mechanism.Male C57BL/6 mice were divided into five groups: normal control; HFD control; metformin monotherapy; pioglitazone monotherapy and combined therapy. After 8 weeks of pharmacological intervention, glucose and lipid metabolism characteristics, hepatic histology, lipidomics profiling and RNA-seq analysis were performed.The combination of pioglitazone and metformin significantly ameliorated HFD-induced metabolic disturbance and the hepatic oil red O area. A lipidomics analysis showed that combined therapy could significantly reduce the high levels of free fatty acids (FFA), diacylglycerol and triglycerides, while a set of glycerophospholipids and sphingolipids were increased in the combined therapy group. Consistently, an RNA-seq analysis also showed a remarkable reduction in genes associated with FFA uptake and de novo lipogenesis, including Cd36, Fads1, Fads2, Fasn, Scd1, Elovl5 and Pklr in the combined therapy group.Pioglitazone and metformin might have a synergistic protective effect on NAFLD by improving hepatic lipid profiles in HFD-induced mice. Further studies are needed to verify the clinical effects.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Metallabenzenes with notable anti-acid or anti-alkali properties were obtained via nucleophilic aromatic substitution. Their thermal stability is so amazing that the solid samples could even be heated in the oven at 170 °C for at least five hours without noticeable decomposition. Photoluminescence studies indicated a degree of electron delocalization within the metallacycle and the 8-hydroxyquinoline ring, which accorded with the X-ray diffraction study. For more details, see the Full Paper by H. Zhang, H. Xia et al. on page 4223 ff.