Abstract Higher order feedback projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here, we investigated the contribution of early thalamic inputs onto L1 interneurons for the establishment of top-down inputs in the primary visual cortex. We find that bottom-up thalamic inputs predominate during early L1 development and preferentially target neurogliaform cells. We find that these projections are critical for the subsequent strengthening of feedback inputs from the anterior cingulate cortex. Enucleation or selective removal of thalamic afferents blocked this phenomenon. Notably, while early activation of anterior cingulate afferents resulted in a premature strengthening of these top-down inputs to neurogliaform cells, this was also dependent on thalamic inputs. Our results demonstrate that the proper establishment of top-down feedback inputs critically depends on bottom-up inputs from the thalamus during early postnatal development.
Recent success in identifying gene regulatory elements in the context of recombinant adeno-associated virus vectors have enabled cell type-restricted gene expression. However, within the cerebral cortex these tools are presently limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple novel enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we identified enhancers that target the breadth of its expression, including two that are selective for parvalbumin and vasoactive intestinal peptide cortical interneurons. Demonstrating the functional utility of these elements, we found that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across species, from mice to humans. Finally, we demonstrate that our selection method is generalizable to other genes and characterize four additional PV-specific enhancers with exquisite specificity for distinct regions of the brain. Altogether, these viral tools can be used for cell-type specific circuit manipulation and hold considerable promise for use in therapeutic interventions.
Abstract Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interneurons is activity dependent. We then investigated the relationship between activity, alternative splicing and synapse formation within this population. Specifically, we discovered that the Nova family of RNA-binding proteins are activity-dependent and are essential for the maturation of somatostatin interneurons, as well as their afferent and efferent connectivity. Within this population, Nova2 preferentially mediates the alternative splicing of genes required for axonal formation and synaptic function independently from its effect on gene expression. Hence, our work demonstrates that the Nova family of proteins through alternative splicing are centrally involved in coupling developmental neuronal activity to cortical circuit formation.
The intrinsic ability of an animal to adapt its behavior and achieve reward is fundamental to survival. Reward-guided behaviors elicit distributed activity across the brain, recruiting cortical and subcortical brain structures such as the prefrontal cortex (PFC), striatum, ventral tegmental area (VTA), and others. Recent advances in techniques for optical physiology have been transformative in our understanding of the brain's reward system. The ability to measure and manipulate the activity of specific neurons during reward-guided behavior is beginning to shed light on the functional roles for genetically and/or anatomically defined neuronal populations. Here, we first provide an overview of imaging techniques enabling such studies, with an emphasis on measuring cellular and subcellular neuronal signals with two-photon microscopy using genetically encoded sensors for calcium and neurotransmitters like dopamine. We then describe how recent studies have applied these techniques to subcortical (dopamine system and striatum) and cortical (prefrontal cortex) systems of reward processing. Although this chapter is not meant as an exhaustive review of the literature, we highlight areas of inquiries where novel optical tools have provided important new data that have been used to both test old hypotheses and generate novel insights about the circuit organization of the brain reward system.
SUMMARY In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate fine neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify enhancer candidates for each of the cortical interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic neurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP) and manipulate (opto- or chemo-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern remain not well understood. Here, we specifically examined the involvement of Eph family members in cochlear development. By performing RNA-sequencing for different types of cochlear cell, in situ hybridization, and immunohistochemistry, we found that EphA7 was strongly expressed in a large subset of SGNs. In EphA7 deletion mice, there was a reduction in the number of inner radial bundles originating from SGNs and projecting to HCs as well as in the number of ribbon synapses on inner hair cells (IHCs), as compared with wild-type or heterozygous mutant mice, attributable to fewer type I afferent fibers. The overall activity of the auditory nerve in EphA7 deletion mice was also reduced, although there was no significant change in the hearing intensity threshold. In vitro analysis further suggested that the reduced innervation of HCs by SGNs could be attributed to a role of EphA7 in regulating outgrowth of SGN neurites as knocking down EphA7 in SGNs resulted in diminished SGN fibers. In addition, suppressing the activity of ERK1/2, a potential downstream target of EphA7 signaling, either with specific inhibitors in cultured explants or by knocking out Prkg1, also resulted in reduced SGN fibers. Together, our results suggest that EphA7 plays an important role in the developmental formation of cochlear innervation pattern through controlling SGN fiber ontogeny. Such regulation may contribute to the salience level of auditory signals presented to the central auditory system.