Electronic energy transfer in the system of I 2 is investigated in an experiment, where single rovibrational quantum states are prepared, single collision conditions prevail, and the final states have been determined from dispersed fluorescence. In the collisional decay is found to be governed by minimum energy transfer. With (X=I 2 ) an anomalous behaviour is found for the initially prepared E, ν = 8, J = 56 level, which is tentatively ascribed to vibrational excitation of the collision partner.
"LASER TECHNOLOGY AS A SOLUTION TO UNANSWERED CLEANING PROBLEMS IN PAPER CONSERVATION — PARELA, A NEW EUROPEAN COOPERATIVE RESEARCH PROJECT." Studies in Conservation, 47(sup2), p. 9
The cleaning of paintings using UV lasers is a growing field of interest in the practice of conservation. In this work, we have studied the chemical and physical changes induced by KrF excimer laser at 248 nm of tempera paint dosimeter systems. The changes have been evaluated by using a range of analytical techniques. These include profilometry; colorimetry; optical and vibrational spectroscopies, such as laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), Fourier transform Raman (FTR), and infrared (FT-IR); and analytical mass spectrometric techniques, such as direct-temperature-resolved mass spectrometry (DTMS) and matrix-assisted laser desorption and ionization mass spectrometry (MALDI-MS). Integration of the results obtained by these techniques allowed the investigation of the nature and degree of change of the irradiated paint systems. Direct laser irradiation induces various degrees of discoloration that depend strongly on the nature of the pigment. This effect takes place mainly on the surface layer of the sample. Degradation of the binding medium occurs in the presence of inorganic pigments, and in some cases, evidence of alterations in the molecular composition of the pigment has been obtained. Varnished systems do not display this discoloration when a thin protective layer is left on the paint. A laser cleaning strategy for varnished paintings should be based on the partial removal of the varnish, leaving a residual layer that shields the underlying pigments from direct laser exposure.
Paper and parchment cleaning with lasers provides the advantage to be a contact-less and dry process. The absence of chemical agents, its spectroscopic selectivity, micro-precision, computer-aided handling, and the combination with on-line diagnostic techniques makes it attractive for restoration applications. This technique, however, is not only limited by the evaporation of such delicate protein or cellulose fibre structures (i.e. the ablation threshold) or by discolorations, which can be easily detected by the naked eye or by microscopic inspection. Even when the aesthetic appearance is not altered, invisible irreversible chemical modifications may affect the long-term aging behavior negatively. In such cases, only diagnostic tools sensitive for chemical changes can probe the limits of laser cleaning. Deviations of chemical conversion threshold fluences from the well-established ablation threshold fluence values were investigated by multi-spectral imaging techniques at parchment or paper model systems and historical originals. Ultraviolet, visible and infrared reflection, but also visible fluorescence were employed using an imaging system, which operates in a spectral range from 320 nm to 1550 nm. Visible imaging allowed an accurate documentation of the color appearance of the artwork before and after the laser treatment. In-depth information of chemical modifications could be gained by the infrared imaging mode. Surface chemical identification was performed by both diffuse-reflection imaging in the ultraviolet range between 320 and 400 nm, and by visible fluorescence imaging using a 365 nm light source. The results for excimer laser treatment at 308 nm show that not only the laser fluence but also the age of the artefact strongly affects the chemical conversion threshold. Most substrates older than at least several decades exhibited much higher chemical stability than new model systems. This is a strong indication that the aging status of both parchment and paper artefact plays a major role in assessing the laser cleaning limits. That means that the laser processing behavior of model systems can be compared with that of original fibrous artworks to only a very limited extent, and that original artefacts have to be treated rather as individual specimens.