Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition that is clinically defined by lesions ranging from painful, deep seated nodules to abscesses, draining sinus tracts, and ultimately, irreversible fibrotic scars. While the etiology remains unclear, a number of mechanisms ranging from genetics to aberrations of the immune system have been proposed. In addition, HS has a number of associations and may occur in conjunction with several diseases that span a host of medical specialties. The estimated prevalence ranges are from 1% to 4%; however, a large degree of under-reporting and misdiagnosis of this condition likely underestimates its true clinical significance. The debilitating consequences of missed diagnoses or improper management leads to severe pain and irreversible cutaneous manifestations (i.e., fistulae, sinus tracts, disfiguring scarring). HS has been found to significantly impair patients' quality of life to a greater degree when compared with other skin conditions. Early recognition and treatment are critical for a favorable prognosis, and diagnostic delays may be related to variable presentations within numerous comorbidities. Here we provide an in-depth, clinical-based review of HS, highlighting the clinical presentation, pathophysiology, grading systems, epidemiology, and comorbidities, in hopes of shedding light on an often misunderstood disease and ultimately moving closer to a more conclusive understanding of its various presentations and association.
Type I interferons (IFNs) are important enhancers of immune responses which are downregulated in human cancers, including skin cancer. Solar ultraviolet (UV) B radiation is a proven environmental carcinogen, and its exposure contributes to the high prevalence of skin cancer. The carcinogenic effects of UV light can be attributed to the formation of cyclobutane pyrimidine dimers (CPD) and errors in the repair and replication of DNA. Treatment with a single dose of UVB (100 mJ/cm2) upregulated IFNα and IFNβ in the skin of C57BL/6 mice. IFNα and IFNβ were predominantly produced by CD11b+ cells. In mice lacking the type I IFN receptor 1 (IFNAR1), the repair of CPD following cutaneous exposure to a single dose of UVB (100 mJ/cm2) was decreased. UVB induced the expression of the DNA repair gene xeroderma pigmentosum A (XPA) in wild-type (WT) mice. In contrast, such treatment in IFNAR1 (IFNAR1-/-) mice downregulated XPA. A local UVB regimen consisting of UVB radiation (150 mJ/cm2) for 4 days followed by sensitization with hapten 2,4, dinitrofluorobenzene (DNFB) resulted in significant suppression of immune responses in both WT and IFNAR1-/- mice. However, there were significantly higher CD4+CD25+Foxp3+ regulatory T-cells in the draining lymph nodes of IFNAR1-/- mice in comparison to WT mice. Overall, our studies reveal a previously unknown action of type I IFNs in the repair of photodamage and the prevention of UVB-induced immune suppression.
DOI: 10.1111/php.12382 In Photochemistry and Photobiology 91(1) page 204, first paragraph under the headline « VDR POLYMORPHISMS », the phrase « Most of the studies have been conducted in European Caucasians, where small nucleotide polymorphisms (SNPs) were assessed for determining the risk of nonmelanoma (SCCs and BCCs) and melanoma skin cancer in individuals.» should be changed to: « Most of the studies have been conducted in European Caucasians, where single nucleotide polymorphisms (SNPs) were assessed for determining the risk of nonmelanoma (SCCs and BCCs) and melanoma skin cancer in individuals.» The authors apologize for the error.
Chronic inflammation associated with tumor necrosis factor (TNF)‐α and reactive oxygen species (ROS) is the hallmark of tuberculosis. Mycobacterium tuberculosis (MTB) directly stimulates human monocytes to secrete TNF‐α. We show the augmented expression of TNF‐α mRNA in MTB‐infected monocytes by cellular activation and ROS was suppressed by allicin in a dose‐dependent manner. Also, allicin enhanced the glutathione peroxidase activity, which correlated inversely with the downregulation of ROS and TNF‐α in MTB‐infected monocytes. Hence, allicin may prove to be a valuable natural antioxidant in combating tuberculosis.
Hidradenitis suppurativa (HS) is a chronic inflammatory condition characterized by the formation of nodules, abscesses, and sinus tracts with tunnels that primarily involves the skin folds. HS affects approximately 1% of the population, but its pathogenesis is unclear. Dysbiosis of skin microbiome is a major cause of HS and alterations of microbiome composition and diversity can be seen in the skin of patients with HS. These disruptions may contribute to the immune dysfunction seen in HS. Understanding these alterations and their contributions to the pathogenesis of HS could help guide future treatment. In addition to dysbiosis promoting immune dysregulation, HS may promote dysbiosis via differences in expression of antimicrobial peptides (AMPs). In this review, we have discussed the role of skin and gut microbiome in manifestation of HS and the consequences of dysbiosis on the immune system.
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.
Interferons (IFNs) have demonstrated therapeutic potential in various skin cancers, specifically squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanoma. The precise mechanism through which type I IFNs exert their antitumor effects in skin cancers is still being studied. However, intralesional type I IFN can be used as an alternative to surgery for select patient populations, and high-dose systemic IFN therapy has been shown to be promising in patients with operable high-risk or metastatic melanoma. Despite the therapeutic potential of IFNs in skin cancer treatment, the toxicity profile often prevents the completion of treatment and further expansion of its clinical application. Type I and III IFNs use the same Janus Kinases (JAKs) for signal transduction, which are pathways initiated at a cell surface receptor that mediates the activation of target genes in the nucleus, based on this shared signaling pathway. Due to selective tumor targeting and the ability to generate both innate and adaptive immune responses, we concluded that type III IFNs have minimal side effects compared with established treatments due to selective tumor targeting. While IFN-λ, a type III IFN, shows therapeutic potential as stand-alone or in combination with another IFN, further studies need to be conducted to explore the therapeutic potential of IFN-λ in skin cancer and the underlying physiological roles and mechanisms of action. In this review, we evaluate whether treatment of skin cancer with type III IFN will have minimal side effects compared with established treatments.
Abstract Novel immunotherapeutics for advanced melanoma have drastically changed survival rates and management strategies in recent years. Immune checkpoint inhibitors have emerged as efficacious agents for some patients but have not been proven to be as beneficial in other patient cohorts. Recent investigation into this observation has implicated the gut microbiome as a potential immunomodulator in regulating patient response to therapy. Numerous studies have provided evidence for this link. Bacterial colonization patterns have been associated with therapeutic outcomes, under the notion that favorable commensal organisms improve host immune response. This review aims to report the most recent and pertinent findings related to the relationship between gut microbial communities and melanoma therapy efficacy. This article also highlights the emerging frontier of artificial intelligence in its application regarding patient microbial composition evaluation, predictive models for therapy response, and recommendations for the future of probiotics and dietary interventions to optimize melanoma survival and outcomes.