Abstract Phosphatidylcholine-soybean protein isolate (PC-SPI) nanoemulsions were prepared by ultrasonication. The effects of preparation conditions (SPI and PC addition, ultrasonic power and time) on the structural properties of the nanoemulsions and their storage stability were investigated. The results showed that the most optimal adsorption capacity and adsorption tightness at the oil–water interface under optimal conditions (1.5% SPI, 0.20% PC, 500 W ultrasonic power and 9 min ultrasonic time) were exhibited by the SPI-PC conjugate, which demonstrated that this nanoemulsions can be categorized as a high-quality emulsion suitable for research. To test its stability, and the high-quality nanoemulsion of β-carotene was stored. After degradation of the nanoemulsions during storage, β-carotene was released. The β-carotene retention rate of the high-quality emulsion was maintained above 86% at different temperatures in the absence of light for up to 30 days. This study provides new information for the development of transport and stability systems for nanoemulsions.
Okara cellulose is a highly abundant, green, sustainable, and biodegradable polymer with many potential industrial applications. In this study, we fabricated composite hydrogels with okara cellulose nanofibers (CNFs) and chitosan (CH) by hydrating, sonicating, and heating them at 100 °C for 30 min, and then induced their assembly by cooling. The effects of okara CNF (with and without 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) oxidation) and CH concentration on the structure and properties of the hydrogels was examined, including their microstructure, surface properties, rheological properties, and thermal stability.
Summary The modulating effect of ultrasound treatments at varying powers and times on the structural and functional properties of black bean protein isolate (BBPI) was investigated. Compared with native BBPI, low‐power (150 W) and medium‐power (300 W) ultrasound treatments increased the solubility, foaming and emulsifying properties of BBPI, especially at 300 W, 24 min. This effect arises predominantly due to increased exposure of hydrophobic groups, which serve to increase the interactions between the protein and water molecules. Additionally, an increase in the protein surface activity improved the absorption of protein molecules at the oil–water and air–water interfaces. Rheology data showed that increased hydrophobic and hydrogen‐bonding interactions improved the water‐holding capacity of BBPI gels following ultrasound treatment. However, high‐power (450 W) ultrasound treatment weakened the functional properties of BBPI, and this was likely due to the formation of macromolecular BBPI aggregates. Overall, this study indicates that ultrasound treatment could be a promising approach for modulating other plant protein resources as well as expanding the application of black bean protein.
The effects of chain length and concentration of different fatty acids (stearic acid and lauric acid) on the structure, physicochemical, and functional properties of soy protein isolate/sodium alginate films were assessed. Fourier transform-infrared spectra confirmed the presence of fatty acids within the films. Increasing the fatty acid chain length or concentration affected their uniform distribution, thereby increasing the opacity of the film modified with fatty acid. The concentration and type of fatty acid significantly affected the moisture barrier properties of the films. The films with stearic acid demonstrated higher hydrophobic characteristics and superior moisture barrier properties than other films. The films containing lauric acid exhibited higher elongation at break than those incorporating stearic acid. Scanning electron micrographs demonstrated insoluble particles and more roughness in the films incorporated with fatty acids. These results show that biopolymer-based films with required properties can be produced using appropriate fatty acids.