AMERICAN SOCIETY OF PLASTIC SURGEONS PLASTIC & RECONSTRUCTIVE SURGERY PRS GLOBAL OPEN ASPS EDUCATION NETWORK AMERICAN SOCIETY OF PLASTIC SURGEONS PLASTIC & RECONSTRUCTIVE SURGERY PRS GLOBAL OPEN ASPS EDUCATION NETWORK
Abstract Injured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Whether neuromuscular activity influences the size of motor nerves is controversial. All neuromuscular activity in cat hindlimbs was eliminated by spinal cord isolation (SCI), namely, spinal cord transection above and below the medial gastrocnemius (MG) and soleus (SOL) motoneuron pools and L5-S3 dorsal root transection. MG, SOL and sural (SUR) nerves were removed for size measurements, eight months after SCI surgery and from age-matched control cats. Nerve fiber number, the linear relationship between axon size and myelin thickness, and the bimodal distributions of nerve fiber area and diameter were maintained in all three nerves after SCI. The distributions of myelinated sensory fibers were unchanged in SUR nerves in contrast to the myelinated motor fibers in the MG and SOL nerves that were significantly larger. These findings provide evidence that all lumbar motoneurons survive SCI and that their nerve fibers enlarge. Thus, motor nerve fiber size in addition to the properties of the motoneurons and their muscle fibers is dynamic, responding to neuromuscular activity.
Gordon, T., N. Tyreman, V. F. Rafuse, and J. B. Munson. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. I. Muscle and motor unit properties. J. Neurophysiol. 77: 2585–2604, 1997. This study of cat medial gastrocnemius (MG) muscle and motor unit (MU) properties tests the hypothesis that the normal ranges of MU contractile force, endurance, and speed are directly associated with the amount of neuromuscular activity normally experienced by each MU. We synchronously activated all MUs in the MG muscle with the same activity (20 Hz in a 50% duty cycle) and asked whether conversion of whole muscle contractile properties is associated with loss of the normal heterogeneity in MU properties. Chronically implanted cuff electrodes on the nerve to MG muscle were used for 24-h/day stimulation and for monitoring progressive changes in contractile force, endurance, and speed by periodic recording of maximal isometric twitch and tetanic contractions under halothane anesthesia. Chronic low-frequency stimulation slowed muscle contractions and made them weaker, and increased muscle endurance. The most rapid and least variable response to stimulation was a decline in force output of the muscle and constituent MUs. Fatigue resistance increased more slowly, whereas the increase in time to peak force varied most widely between animals and occurred with a longer time course than either force or endurance. Changes in contractile force, endurance, and speed of the whole MG muscle accurately reflected changes in the properties of the constituent MUs both in extent and time course. Normally there is a 100-fold range in tetanic force and a 10-fold range in fatigue indexes and twitch time to peak force. After chronic stimulation, the range in these properties was significantly reduced and, even in MU samples from single animals, the range was shown to correspond with the slow (type S) MUs of the normal MG. In no case was the range reduced to less than the type S range. The same results were obtained when the same chronic stimulation pattern of 20 Hz/50% duty cycle was imposed on paralyzed muscles after hemisection and unilateral deafferentation. The findings that the properties of MUs still varied within the normal range of type S MUs and were still heterogeneous despite a decline in the variance in any one property indicate that the neuromuscular activity can account only in part for the wide range of muscle properties. It is concluded that the normal range of properties within MU types reflects an intrinsic regulation of properties in the multinucleated muscle fibers.
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.
Motoneurons reinnervate the distal stump at variable rates after peripheral nerve transection and suture. In the rat femoral nerve model, reinnervation is already substantial 3 weeks after repair, but is not completed for an additional 7 weeks. However, this "staggered regeneration" can be temporally compressed by application of 20 Hz electrical stimulation to the nerve for 1 hr. The present experiments explore two possible mechanisms for this stimulation effect: (1) synchronization of distal stump reinnervation and (2) enhancement of regeneration speed. The first possibility was investigated by labeling all motoneurons that have crossed the repair at intervals from 4 d to 4 weeks after rat femoral nerve transection and suture. Although many axons did not cross until 3–4 weeks after routine repair, stimulation significantly increased the number crossing at 4 and 7 d, with only a few crossing after 2 weeks. Regeneration speed was studied by radioisotope labeling of transported proteins and by anterograde labeling of regenerating axons, and was not altered by stimulation. Attempts to condition the neuron by stimulating the femoral nerve 1 week before injury were also without effect. Electrical stimulation thus promotes the onset of motor axon regeneration without increasing its speed. This finding suggests a combined approach to improving the outcome of nerve repair, beginning with stimulation to recruit all motoneurons across the repair, followed by other treatments to speed and prolong axonal elongation.