In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus.We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti.Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals.This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals.
Background: Several promising live attenuated virus (LAV) dengue vaccines are in development, but information about innate immune responses and early correlates of protection are lacking. Methods: We characterized human genome-wide transcripts in whole blood from 10 volunteers at 11 time-points after immunization with the dengue virus type 3 (DENV-3) component of the NIH dengue vaccine candidate TV003 and from 30 hospitalized children with acute primary DENV-3 infection. We compared day-specific gene expression patterns with subsequent neutralizing antibody (NAb) titers. Results: The transcriptional response to vaccination was largely confined to days 5-20 and was dominated by an interferon-associated signature and a cell cycle signature that peaked on days 8 and 14, respectively. Changes in transcript abundance were much greater in magnitude and scope in symptomatic natural infection than following vaccination (maximum fold-change >200 versus 21 post-vaccination; 3,210 versus 286 transcripts with significant fold-change), but shared gene modules were induced in the same sequence. The abundance of 131 transcripts on days 8 and 9 post-vaccination was strongly correlated with NAb titers measured 6 weeks post-vaccination. Conclusions: LAV dengue vaccination elicits early transcriptional responses that mirror those found in symptomatic natural infection and provide candidate early markers of protection against DENV infection.
Abstract CD8+ cells from HIV-infected individuals showing the CD8+ cell noncytotoxic antiviral response unexpectedly revealed mRNA for VCAM-1, a cell surface molecule found on endothelial cells. Uninfected subjects had undetectable levels of VCAM-1 mRNA in their CD8+ cells. Flow cytometry analysis showed that up to 12% of the CD8+ cells from HIV-positive individuals expressed VCAM-1 compared with 0.8% of the CD8+ cells of HIV-negative individuals. Enrichment of the CD8+VCAM-1+ cell population and subsequent coculture with CD4+ cells acutely infected with HIV-1 showed that the VCAM-1+CD8+ cells were able to suppress viral replication with 50% less input cells than the unseparated CD8+ cell population. This study demonstrates, for the first time, the expression of VCAM-1 on CD8+ cells. Moreover, the CD8+VCAM-1+ cells show enhanced CD8+ cell noncytotoxic antiviral response activity that could have clinical importance in HIV infection.
Abstract Background The respiratory pathogen Bordetella parapertussis is a valuable model in which to study the complex phenotype of host specificity because of its unique two-species host range. One subset of strains, including the sequenced representative, causes whooping cough in humans, while other strains infect only sheep. The disease process in sheep is not well understood, nor are the genetic and transcriptional differences that might provide the basis for host specificity among ovine and human strains. Results We found 40 previously unknown genomic regions in an ovine strain of B. parapertussis using subtractive hybridization, including unique lipopolysaccharide genes. A microarray survey of the gene contents of 71 human and ovine strains revealed further differences, with 47 regions of difference distinguishing the host-restricted subgroups. In addition, sheep and human strains displayed distinct whole-genome transcript abundance profiles. We developed an animal model in which sheep were inoculated with a sheep strain, human strain, or mixture of the two. We found that the ovine strain persisted in the nasal cavity for 12 to 14 days, while the human strain colonized at lower levels and was no longer detected by 7 days post-inoculation. The ovine strain induced less granulocyte infiltration of the nasal mucosa. Conclusion Several factors may play a role in determining host range of B. parapertussis . Human- and ovine-associated strains have differences in content and sequence of genes encoding proteins that mediate host-pathogen contact, such as lipopolysaccharide and fimbriae, as well as variation in regulation of toxins, type III secretion genes, and other virulence-associated genes.
ABSTRACT Specific oligonucleotide hybridization conditions were established for single-cell enumeration of uncultivated TM7 and IO25 bacteria by using clones expressing heterologous 16S rRNA. In situ analysis of human subgingival crevice specimens revealed that a greater proportion of samples from sites of chronic periodontitis than from healthy sites contained TM7 subgroup IO25. In addition, IO25 bacterial cells from periodontitis site samples were more abundant and fourfold longer than IO25 cells from healthy site samples.