Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
The visual cues from multiple support regions of different sizes and resolutions are complementary in classifying a candidate box in object detection. Effective integration of local and contextual visual cues from these regions has become a fundamental problem in object detection. In this paper, we propose a gated bi-directional CNN (GBD-Net) to pass messages among features from different support regions during both feature learning and feature extraction. Such message passing can be implemented through convolution between neighboring support regions in two directions and can be conducted in various layers. Therefore, local and contextual visual patterns can validate the existence of each other by learning their nonlinear relationships and their close interactions are modeled in a more complex way. It is also shown that message passing is not always helpful but dependent on individual samples. Gated functions are therefore needed to control message transmission, whose on-or-offs are controlled by extra visual evidence from the input sample. The effectiveness of GBD-Net is shown through experiments on three object detection datasets, ImageNet, Pascal VOC2007 and Microsoft COCO. Besides the GBD-Net, this paper also shows the details of our approach in winning the ImageNet object detection challenge of 2016, with source code provided on https://github.com/craftGBD/craftGBD. In this winning system, the modified GBD-Net, new pretraining scheme and better region proposal designs are provided. We also show the effectiveness of different network structures and existing techniques for object detection, such as multi-scale testing, left-right flip, bounding box voting, NMS, and context.
Objective: To investigate the clinical effects and safety for cisplatin combined with 5-fluorouracil (5-FU) intra-arterial chemotherapy in the treatment of oral cancer. Materials and Methods: A total of ninety cases with oral cancer were recruited in this study. Forty-three subjects received the pingyangmycin (PYM) (control group) with PYM 8 mg, intramuscular injection, QD for 21 days per cycle. Moreover, other 47 cases received cisplatin 100 mg/m 224 h perfusion chemotherapy, day 1 with 21 days per cycle, and 5-FU 1000 mg/m 2 perfusion chemotherapy 72 h with 21 days per cycle. All the patients received three cycles treatment. After three cycles chemotherapy, the objective response rate (ORR) and chemotherapy-related toxicities were evaluated between the two groups. Results: The ORR were 53.49% and 72.34%, respectively in the control and observation group which indicated observation group significant higher (P < 0.05). The chemotherapy-related toxicities incidence was much higher in control group compared with observation group (36.17% vs. 11.63%, P < 0.05). Conclusion: Cisplatin combined with 5-FU intra-arterial chemotherapy was effective in the treatment of oral cancer with less toxicties.
Pedestrian attribute recognition has attracted many attentions due to its wide applications in scene understanding and person analysis from surveillance videos. Existing methods try to use additional pose, part or viewpoint information to complement the global feature representation for attribute classification. However, these methods face difficulties in localizing the areas corresponding to different attributes. To address this problem, we propose a novel Localization Guided Network which assigns attribute-specific weights to local features based on the affinity between proposals pre-extracted proposals and attribute locations. The advantage of our model is that our local features are learned automatically for each attribute and emphasized by the interaction with global features. We demonstrate the effectiveness of our Localization Guided Network on two pedestrian attribute benchmarks (PA-100K and RAP). Our result surpasses the previous state-of-the-art in all five metrics on both datasets.
This paper solves the speed bottleneck of deformable part model (DPM), while maintaining the accuracy in detection on challenging datasets. Three prohibitive steps in cascade version of DPM are accelerated, including 2D correlation between root filter and feature map, cascade part pruning and HOG feature extraction. For 2D correlation, the root filter is constrained to be low rank, so that 2D correlation can be calculated by more efficient linear combination of 1D correlations. A proximal gradient algorithm is adopted to progressively learn the low rank filter in a discriminative manner. For cascade part pruning, neighborhood aware cascade is proposed to capture the dependence in neighborhood regions for aggressive pruning. Instead of explicit computation of part scores, hypotheses can be pruned by scores of neighborhoods under the first order approximation. For HOG feature extraction, look-up tables are constructed to replace expensive calculations of orientation partition and magnitude with simpler matrix index operations. Extensive experiments show that (a) the proposed method is 4 times faster than the current fastest DPM method with similar accuracy on Pascal VOC, (b) the proposed method achieves state-of-the-art accuracy on pedestrian and face detection task with frame-rate speed.
Convolutional neural network (CNN) based face detectors are inefficient in handling faces of diverse scales. They rely on either fitting a large single model to faces across a large scale range or multi-scale testing. Both are computationally expensive. We propose Scale-aware Face Detection (SAFD) to handle scale explicitly using CNN, and achieve better performance with less computation cost. Prior to detection, an efficient CNN predicts the scale distribution histogram of the faces. Then the scale histogram guides the zoom-in and zoom-out of the image. Since the faces will be approximately in uniform scale after zoom, they can be detected accurately even with much smaller CNN. Actually, more than 99% of the faces in AFW can be covered with less than two zooms per image. Extensive experiments on FDDB, MALF and AFW show advantages of SAFD.
We present a conceptually simple, flexible and general framework for cross-dataset training in object detection. Given two or more already labeled datasets that target for different object classes, cross-dataset training aims to detect the union of the different classes, so that we do not have to label all the classes for all the datasets. By cross-dataset training, existing datasets can be utilized to detect the merged object classes with a single model. Further more, in industrial applications, the object classes usually increase on demand. So when adding new classes, it is quite time-consuming if we label the new classes on all the existing datasets. While using cross-dataset training, we only need to label the new classes on the new dataset. We experiment on PASCAL VOC, COCO, WIDER FACE and WIDER Pedestrian with both solo and cross-dataset settings. Results show that our cross-dataset pipeline can achieve similar impressive performance simultaneously on these datasets compared with training independently.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both "local and global" temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.