Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after cytoreductive surgery (CRS). During HIPEC, fluid (41-43 °C) is administered and drained through a limited number of catheters, risking thermal and drug heterogeneities within the abdominal cavity that might reduce effectiveness. Treatment planning software provides a unique tool for optimizing treatment delivery. This study aimed to investigate the influence of treatment-specific parameters on the thermal and drug homogeneity in the peritoneal cavity in a computed tomography based rat model.We developed computational fluid dynamics (CFD) software simulating the dynamic flow, temperature and drug distribution during oxaliplatin based HIPEC. The influence of location and number of catheters, flow alternations and flow rates on peritoneal temperature and drug distribution were determined. The software was validated using data from experimental rat HIPEC studies.The predicted core temperature and systemic oxaliplatin concentration were comparable to the values found in literature. Adequate placement of catheters, additional inflow catheters and higher flow rates reduced intraperitoneal temperature spatial variation by -1.4 °C, -2.3 °C and -1.2 °C, respectively. Flow alternations resulted in higher temperatures (up to +1.5 °C) over the peritoneal surface. Higher flow rates also reduced the spatial variation of chemotherapy concentration over the peritoneal surface resulting in a more homogeneous effective treatment dose.The presented treatment planning software provides unique insights in the dynamics during HIPEC, which enables optimization of treatment-specific parameters and provides an excellent basis for HIPEC treatment planning in human applications.
Abstract An oblique double-cut rotation osteotomy (ODCRO) enables correcting a complex bone deformation by aligning, in 3D, the distal, middle and proximal bone segments with a target bone, without intersegmental gaps. We propose virtual preoperative planning of an ODCRO. To minimize a residual translation error, we use an optimization algorithm and optimize towards bone length, alignment in the transverse direction, or a balanced reconstruction. We compare the residual alignment error with an oblique single-cut rotation osteotomy using 15 complex bone deformations. The single-cut approach was not feasible in 5 cases, whereas the ODCRO procedure was feasible in all cases. The residual alignment error was smaller for the ODCRO than for the single-cut approach except for one case. In a subset for length reconstruction, the length error of 7.3–21.3 mm was restored to 0.0 mm in 4 of 5 cases, although at the cost of an increased transverse translation. The proposed method renders planning an ODCRO feasible and helps restoring bone alignment and lengthening better than an oblique single-cut rotation osteotomy. Awareness of the challenges and possibilities in preoperative planning of an ODCRO will be of value for future alignment surgery and for patients.
Background Extra-articular distal radius fractures are often treated by circular casting. A functional brace, however, may equally support the fracture zone but allows early mobilization of the radiocarpal joint. Since the amount of fracture movement for different types of fixation is currently unknown, a study was initiated to investigate the degree of bone displacement in extra-articular distal radius fractures fixated by regular circular casting, functional bracing, or no-fixation. Methods In four cadaveric arms, an extra-articular distal radius fracture was simulated and immobilized by the three ways of fixation. After creating an extra-articular distal radius fracture, the fracture was reduced anatomically and the cadaveric arm was strapped in a test frame. Hereafter, flexion, extension and deviation of the hand were then induced by a static moment of force of one newton meter. Subsequently CT scans of the wrist were performed and bone displacement was quantified. Results Immobilization of an extra-articular distal radius fracture by functional bracing provides comparable fixation compared to circular casting and no fixation, and shows significantly less extension-rotation displacement of the distal bone segment for the wrist in flexion and palmodorsal translation and extension-rotation for the wrist in extension. Conclusion Functional bracing of extra articular distal radius fractures in cadaveric arms provides significant less extension-rotation displacement in flexion and palmodorsal translation and extension-rotation in extension compared to circular casting and no fixation.
Use of patient-specific fixation plates is promising in corrective osteotomy of the distal radius. So far, custom plates were mostly shaped to closely fit onto the bone surface and ensure accurate positioning of bone segments, however, without considering the biomechanical needs for bone healing. In this study, we investigated how custom plates can be optimized to stimulate callus formation under daily loading conditions. We calculated implant stress distributions, axial screw forces, and interfragmentary strains via finite element analysis (FEA) and compared these parameters for a corrective distal radius osteotomy model fixated by standard and custom plates. We then evaluated these parameters in a modified custom plate design with alternative screw configuration, plate size, and thickness on 5 radii models. Compared to initial design, in the modified custom plate, the maximum stress was reduced, especially under torsional load (- 31%). Under bending load, implants with 1.9-mm thickness induced an average strain (median = 2.14%, IQR = 0.2) in the recommended range (2-10%) to promote callus formation. Optimizing the plate shape, width, and thickness in order to keep the fixation stable while guaranteeing sufficient strain to enhance callus formation can be considered as a design criteria for future, less invasive, custom distal radius plates. Graphical abstract ᅟ.
Abstract In unstable shoulders, excessive anteroinferior position of the humeral head relative to the glenoid can lead to a dislocation. Measuring humeral head position could therefore be valuable in quantifying shoulder laxity. The aim of this study was to measure (1) position of the humeral head relative to the glenoid and (2) joint space thickness during passive motion in unstable shoulders caused by traumatic anterior dislocations and in contralateral uninjured shoulders. A prospective cross‐sectional CT‐study was performed in patients with unilateral anterior shoulder instability. Patients underwent CT scanning of both injured and uninjured side in supine position (0° abduction and 0° external rotation) and in 60°, 90°, and 120° of abduction with 90° of external rotation without an external load. Subsequently, 3D virtual models were created of the humerus and the scapula to create a glenoid coordinate system to identify poster‐anterior, inferior‐superior, and lateral‐medial position of the humeral head relative to the glenoid. Joint space thickness was defined as the average distance between the subchondral bone surfaces of the humeral head and glenoid. Fifteen consecutive patients were included. In supine position, the humeral head was positioned more anteriorly ( p = 0.004), inferiorly ( p = 0.019), and laterally ( p = 0.021) in the injured compared to the uninjured shoulder. No differences were observed in any of the other positions. A joint‐space thickness map, showing the bone‐to‐bone distances, identified the Hill−Sachs lesion footprint on the glenoid surface in external rotation and abduction, but no differences on average joint space thickness were observed in any position.
Knowledge about the relationship between morphology and the function of neurons is an important instrument in understanding the role that neurons play in information processing in the brain. In paricular, the diameter and length of segments in dendritic arborization are considered to be crucial morphological features. Consequently, accurate detection of morphological features such as centre line position and diameter is a prerequisite to establish this relationship.Accurate detection of neuron morphology from confocal microscope images is hampered by the low signal to noise ratio of the images and the properties of the microscope point spread function (PSF). The size and the anisotropy of the PSF causes feature detection to be biased and orientation dependent.We deal with these problems by utilizing Gaussian image derivatives for feature detection. Gaussian kernels provide for image derivative estimates with low noise sensitivity. Features of interest such as centre line positions and diameter in a tubular neuronal segment of a dendritic tree can be detected by calculating and subsequently utilizing Gaussian image derivatives. For diameter measurement the microscope PSF is incorporated into the derivative calculation.Results on real and simulated confocal images reveal that centre line position and diameter can be estimated accurately and are bias free even under realistic imaging conditions.