The molecular simulation of biomolecules adsorbed at noble metal interfaces can assist in the development of bionanotechnology applications. In line with advances in polarizable force fields for adsorption at aqueous gold interfaces, there is scope for developing a similar force field for silver. One way to accomplish this is via the generation of in vacuo adsorption energies calculated using first-principles approaches for a wide range of different but biologically relevant small molecules, including water. Here, we present such first-principles data for a comprehensive range of bio-organic molecules obtained from plane-wave density functional theory calculations using the vdW-DF functional. As reported previously for the gold force field, GolP-CHARMM (Wright, L. B.; Rodger, P. M.; Corni, S.; Walsh, T. R. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616–1630), we have used these data to construct a a new force field, AgP-CHARMM, suitable for the simulation of biomolecules at the aqueous Ag(111) and Ag(100) interfaces. This force field is derived to be consistent with GolP-CHARMM such that adsorption on Ag and Au can be compared on an equal footing. Our force fields are used to evaluate the water overlayer stability on both silver and gold, finding good agreement with known behaviors. We also calculate and compare the structuring (spatial and orientational) of liquid water adsorbed at both silver and gold. Finally, we report the adsorption free energy of a range of amino acids at both the Au(111) and Ag(111) aqueous interfaces, calculated using metadynamics. Stronger adsorption on gold was noted in most cases, with the exception being the carboxylate group present in aspartic acid. Our findings also indicate differences in the binding free energy profile between silver and gold for some amino acids, notably for His and Arg. Our analysis suggests that the relatively stronger structuring of the first water layer on silver, relative to gold, could give rise to these differences.
Two-dimensional nanosheet-based materials such as graphene, hexagonal boron nitride, and MoS2 represent intriguing structures for a variety of biological applications ranging from biosensing to nanomedicine. Recent advances have demonstrated that peptides can be identified with affinity for these three materials, thus generating a highly unique bioconjugate interfacial system. This Review focuses on recent advances in the formation of bioconjugates of these types, paying particular attention to the structure/function relationship of the peptide overlayer. This is achieved through the amino acid composition of the nanosheet binding peptides, thus allowing for precise control over the properties of the final materials. Such bioconjugate systems offer rapid advances via direct property control that remain difficult to achieve for biological applications using nonbiological approaches.
A key determinant for carbon fibre reinforced polymer (CFRP) performance is their fibre-matrix interactions at the interface and interphase. These allow for stress transfer from the relatively weak and ductile resin to the strong reinforcing fibres.
Amorphous SiO2 surfaces are generated from bulk–liquid configurations using simulations employing a polarizable-ion model. The surfaces are characterized in terms of the ion environments as a function of depth into the surface. Comparison is made to previous simulation studies and subtle differences are highlighted and attributed to differences in the potential models. The connectivity of the surface sites is established with a view to investigating the hydrolysis of this surface. Dynamical properties are calculated using a simple projected velocity time correlation function and normal mode analysis and compared to the simulated bulk and experimental bulk and surface spectra.
The geometric structure of the Rh$_8^+$ cation is investigated using a combination of far-infrared multiple photon dissociation spectroscopy and density functional theory (DFT) calculations. The energetic ordering of the different structural motifs is found to depend sensitively on the choice of pure or hybrid exchange functionals. Comparison of experimental and calculated spectra suggests the cluster to have a close-packed, bicapped octahedral structure, in contrast to recent predictions of a cubic structure for the neutral cluster. Our findings demonstrate the importance of including some exact exchange contributions in the DFT calculations, via hybrid functionals, when applied to rhodium clusters, and cast doubt on the application of pure functionals for late transition metal clusters in general.
Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.
Sulfur $K\ensuremath{\beta}$ x-ray-emission spectra from carbonyl sulfide have been measured with resonant excitation at the sulfur $K$ absorption threshold and compared with results of self-consistent field and singles-doubles configuration-interaction calculations. For excitation to the strong 4\ensuremath{\pi} absorption resonance, a splitting of the main emission peak is interpreted in terms of influence of the 4\ensuremath{\pi} electron on the final valence-hole states. The polarization selectivity of the emission spectrometer was used to distinguish emission polarized parallel versus perpendicular with respect to the polarization of the excitation radiation. The observed polarization dependence is consistent with the molecular symmetries of the calculated intermediate and final states.