A two-site WERA HF radar station was installed in November 2009 at the eastern coast of Lemnos Island in North Aegean Sea, aiming to monitor the surface inflow of Black Sea waters exiting from the Dardanelles Strait, as well as to constitute a coastal management tool for incidents of oil-pollution or save-and-rescue operations. Strong interference by foreign transmissions is a source of noise deteriorating the quality of the backscattered signal, thus significantly reducing the HF radar’s effective data return rate. In order to ameliorate this problem, further quality-control and data gap interpolating procedures have been developed and applied, to be used in addition to the procedures incorporated and used by the manufacturer’s signal processing software. The second-level processing involves traditional despiking in the temporal domain, preceding Empirical Orthogonal Function analysis. The latter is used not only to filter high-frequency noise but also to fill data gaps in time and space. The data reconstruction procedure has been assessed via comparison of (a) HF radial with CODE-type drifter radial velocities as well as (b) HF-derived virtual drifter tracks with actual drifter tracks. The main circulation features and their variability, as revealed by the reconstructed fields, are presented.
Shipping activity can be a substantial source of pollution and impact on the environment, including air, water and ecosystems, as well as adverse health and climatic effects. Due to the distribution of maritime transport activity routes in the EU, a large portion of the population is exposed to shipping pollution throughout Europe. The ongoing European project EMERGE aims to investigate and quantify these impacts over Europe, and in more detail, in specific case studies regions. The Aveiro lagoon region in Portugal is one of these case studies. This region is a Natura 2000 area, and also includes a medium-sized port. Both air quality and water modelling tools were applied to assess the impact of the emissions and discharges from shipping (to air and water) in the region in 2018. Additionally, ecotoxicological impacts were determined by bioassays to evaluate the impact of scrubber-water discharges on the most sensitive stages of marine invertebrates, and on the post-exposure feeding inhibition of crustacean and bivalve species. The results show that there was a substantial increase in atmospheric pollutant concentrations due to emissions attributed to shipping, which was most relevant for NOx and SO2 (up to a 30 % shipping contribution). There was no significant degradation of the water quality, mainly as the ships operating in this area did not have scrubber equipment. The ecotoxicological tests were performed with three samples of scrubber water, including one artificial sample and two samples collected on-board ships. If scrubber water would have been discharged in this area, the results indicated that the majority of the tested species would be exposed to lowest observed effect concentration (LOEC) for the different scrubber-water samples, as well as to substantial concentrations of metals, PAHs, and alkylated PAHs.
The formation of dense water in the Aegean Sea is important as it affects the deep circulation and the hydrography of the Eastern Mediterranean Sea. In this study, the variability of dense water formation is investigated in relation to forcing mechanisms from 1947 to 2023 in the subbasins of the Aegean Sea, utilising in situ observations from various sources, which have been analysed in combination with satellite altimetry and reanalyses products. The analysis reveals that the Aegean Sea has been in a state of increased dense water formation since 2017 due to the combination of increased surface buoyancy loss and reduced Black Sea water inflow. Extremely high salinity has been recorded in the intermediate layers of the Aegean Sea since 2019. The anticyclonic circulation of the North Ionian gyre during 2017 and 2018 probably also contributed to the rapid transport of highly saline waters in the intermediate and, through dense water formation, the deep layers of the Aegean Sea in 2019. Until 2022, the dense waters formed during the peak of the Eastern Mediterranean Transient still occupied the bottom layers of some deep subbasins of the North and South Aegean; however, the 29.4 kg m−3 isopycnal in the North Aegean and the 29.3 kg m−3 isopycnal in the Southeastern Aegean have gradually deepened by 800 m, permitting the waters forming in the last ten years in the Aegean Sea to settle at ever greater depths. Temperature controls the density variability of the Cretan intermediate water up to the decadal time scale. Increased data availability since 2010 was sufficient to clarify that intrusions of dense water from the North–Central Aegean Sea contributed to the erosion of the Eastern Mediterranean transitional waters in the South Aegean Sea after 2017, as well as to raising the intermediate water masses of the South Aegean to shallower depths. The erosion of the transitional Mediterranean waters in the South Aegean Sea between 1947 and 1955 and 1973 and 1980 coincided with increased dense water formation in the North–Central Aegean Sea. During the peak of the Eastern Mediterranean Transient, the North Ionian circulation, the Black Sea water inflow, the Atlantic Multidecadal Oscillation, and the surface buoyancy fluxes favoured dense water formation in the Aegean Sea.
Data set of mass discharge of selected pollutants from shipping in the European region. Created in the framework of the project Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions (EMERGE). To determine the mass of discharged pollutants, AIS-based ship emission modelling of discharge volumes is combined with results of water effluent analysis. For the discharge volumes, the Ship Traffic Emission Assessment Model (STEAM) is used. The total discharge volume of wastes is comprised of five waste streams: open/close scrubber, grey, black and ballast water. For the content of pollutants in the five waste streams, a bibliographic database of waste stream pollutant concentrations compiled during the project is used.
In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.
Data set of mass discharge of selected pollutants from shipping in the European region. Created in the framework of the project Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions (EMERGE). To determine the mass of discharged pollutants, AIS-based ship emission modelling of discharge volumes is combined with results of water effluent analysis. For the discharge volumes, the Ship Traffic Emission Assessment Model (STEAM) is used. The total discharge volume of wastes is comprised of five waste streams: open/close scrubber, grey, black and ballast water. For the content of pollutants in the five waste streams, a bibliographic database of waste stream pollutant concentrations compiled during the project is used.
High-frequency (HF) coastal radars measure current velocity at the ocean surface with a 30–100 km range and 1–3 km resolution, every 0.25–1 h. HF radars are well suited to many applications, such as search and rescue (SaR), oil-spill mitigation and ecosystem management. Here we present a first organized core of 12 HF radars installed in five sites in four countries (Greece, Italy, France and Spain) within the European MED project, the Tracking Oil Spill and Coastal Awareness (TOSCA) network. Dedicated experiments tested radar capabilities to estimate transport driven by currents, which is the key feature for all the above applications. Experiments involved the deployment of drifters, i.e., floating buoys, acting as proxies for substances passively advected by currents. Using HF radars the search range is reduced by a factor of 1.6 to 5.3 after 24 h. The paper also underlines the importance of sharing common tools for HF radar data processing and the need to mitigate radio frequency interference. The effort can be regarded as an initial step toward the creation of a Mediterranean or European HF radar network, crucial for any European integrated ocean observing system (IOOS).
The North Aegean Sea is a sub-basin of the Mediterranean which exhibits a range of oceanic processes at various scales. Due to the inflow of very light, mesotrophic Black-Sea waters it is the most productive region of the seas around the Hellenic Peninsula, although the regular seasonal coastal upwelling along its eastern shores does not contribute to its productivity. Despite the continuous buoyancy import by the Black Sea, the North Aegean hosts the densest waters of the Eastern Mediterranean. Finally, three semi-enclosed bays located in two islands of the North Aegean exhibit an alternating behavior as sources or sinks of buoyancy for the basin, while their productivity and natural beauty support a range of coastal activities. For the above reasons, the University of the Aegean has invested over several years in the development of a coastal oceanographic observatory (AEGIS), covering both the open North Aegean Sea and the three main bays of the islands of Lesvos and Lemnos. The Observatory consists of a numerical modeling component and an observational component.The modeling component of the observatory consists of four coastal circulation models (for the three bays and the island of Lesvos) nested within a larger domain circulation model covering the whole Aegean Sea north of 37º N. Data assimilation, employing both satellite (sea-surface temperature and sea-level) and field data (employing mostly ARGO float observations) is used in the model of the extended domain (an implementation/configuration of the ROMS system), while the observations obtained in the coastal regions are currently used for coastal models’ (DELFT-3D FLOW and ROMS) validation. In addition to the above circulation models, SWAN is used to simulate the surface waves and DELFT-3D WAQ is being implemented to simulate the biochemical functioning at the various model domains.The observational component at small geographical scales (in the Bays) comprise of continuous meteorological and oceanographic observations through an oceanographic mooring in the middle of the Bay of Kalloni, sea-level observations at the Bays of Kalloni and Gera, and High-Frequency radar observations of sea-surface currents and waves in a region east of Lemnos island, aiming to monitor the Black Sea outflow into the Aegean. The above continuous measurements are supplemented by periodic hydrographic and biogeochemical measurements in the three Bays, to validate the models and calibrate the in-situ continuous data. A recent addition to the AEGIS’s observational arsenal is an ocean glider aimed to capture the variability of the open North Aegean sea.The AEGIS Observatory provides the necessary background to support strategic planning of human interventions at regional and local scales, such as Marine Spatial Planning or the construction of river dams affecting sensitive coastal basins. The implementation of the Coastal Laboratory has been supported by several projects, the most recent being the project “Coastal Environment Observatory and Risk Management in Island Regions AEGIS+” (MIS 5047038), implemented within the Operational Programme “Competitiveness, Enterpreneurship and Innovation” (NSRF 2014-2020), cofinanced by the Hellenic Government (Ministry of Development and Investments) and the European Union (European Regional Development Fund).
Data set of mass discharge of selected pollutants from shipping in the European region. Created in the framework of the project Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions (EMERGE). To determine the mass of discharged pollutants, AIS-based ship emission modelling of discharge volumes is combined with results of water effluent analysis. For the discharge volumes, the Ship Traffic Emission Assessment Model (STEAM) is used. The total discharge volume of wastes is comprised of five waste streams: open/close scrubber, grey, black and ballast water. For the content of pollutants in the five waste streams, a bibliographic database of waste stream pollutant concentrations compiled during the project is used.