Antibiotic-loaded bone cements are used to decrease occurrence of bone infections in cemented arthroplasties and actually being considered as a more cost-effective procedure when compared to cement...
The development of solid materials that deliver nitric oxide (NO) are of interest for several therapeutic applications. Nevertheless, due to NO’s reactive nature, rapid diffusion and short half-life, reporting their NO delivery characteristics is rather complex. The full knowledge of this parameter is fundamental to discuss the therapeutic utility of these materials, and thus, the NO quantification strategy must be carefully considered according to the NO-releasing scaffold type, to the expected NO-releasing amounts and to the medium of quantification. In this work, we explore and discuss three different ways of quantifying the release of NO in different biological fluids: haemoglobin assay, Griess assay and NO electrochemical detection. For these measurements, different porous materials, namely zeolites and titanosilicates were used as models for NO-releasing platforms. The oxyhaemoglobin assay offers great sensitivity (nanomolar levels), but it is only possible to monitor the NO release while oxyhaemoglobin is not fully converted. On the other hand, Griess assay has low sensitivity in complex biological media, namely in blood, and interferences with media make NO measurements questionable. Nevertheless, this method can measure micromolar amounts of NO and may be useful for an initial screening for long-term release performance. The electrochemical sensor enabled real-time measurements in a variety of biological settings. However, measured NO is critically low in oxygenated and complex media, giving transient signals, which makes long-term quantification impossible. Despite the disadvantages of each method, the combination of all the results provided a more comprehensive NO release profile for these materials, which will help to determine which formulations are most promising for specific therapeutic applications. This study highlights the importance of using appropriate NO quantification tools to provide accurate reports.
In the present work, we study the development and biological characterization of a polymethyl methacrylate (PMMA)-based minocycline delivery system, to be used as a space maintainer within craniofacial staged regenerative interventions. The developed delivery systems were characterized regarding solid state characteristics and assayed in vitro for antibacterial and anti-inflammatory activity, and cytocompatibility with human bone cells. A drug release profile allowed for an initial burst release and a more sustained and controlled release over time, with minimum inhibitory concentrations for the assayed and relevant pathogenic bacteria (i.e., Staphylococcus aureus, slime-producer Staphylococcus epidermidis and Escherichia coli) being easily attained in the early time points, and sustained up to 72 h. Furthermore, an improved osteoblastic cell response-with enhancement of cell adhesion and cell proliferation-and increased anti-inflammatory activity were verified in developed systems, compared to a control (non minocycline-loaded PMMA cement). The obtained results converge to support the possible efficacy of the developed PMMA-based minocycline delivery systems for the clinical management of complex craniofacial trauma. Here, biomaterials with space maintenance properties are necessary for the management of staged reconstructive approaches, thus minimizing the risk of peri-operative infections and enhancing the local tissue healing and early stages of regeneration.
Abstract Herein, a robust microporous aluminum tetracarboxylate framework, MIL‐120(Al)‐AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO 2 uptake (1.9 mmol g −1 at 0.1 bar, 298 K). In situ Synchrotron X‐ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO 2 capture configuration with the pores being decorated with a high density of µ 2 ‐OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host‐guest interactions Q st (CO 2 ) value of MIL‐120(Al)‐AP (−40 kJ mol −1 ) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL‐120(Al)‐AP at the kilogram scale with a high yield while the Metal‐ Organic Framework (MOF) is further shaped with inorganic binders as millimeter‐sized mechanically stable beads. First evidences of its efficient CO 2 /N 2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO 2 adsorption over water. Finally, a techno‐economic analysis gives an estimated production cost of ≈ 13 $ kg −1 , significantly lower than for other benchmark MOFs. These advancements make MIL‐120(Al)‐AP an excellent candidate as an adsorbent for industrial‐scale CO 2 capture processes.
Simple, economic and environmental friendly high-performance liquid chromatography methods for levofloxacin and minocycline quantification in biomimetic media were developed and validate including their stability at body temperature, an often neglected evaluation parameter. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin and minocycline quantification the UV detection was set at 284 and at 273 nm, respectively. The separation of both antibiotics was achieved using a reversed-phase column and a mobile phase consisting of acetonitrile and water (15:85) with 0.6% triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline was used and vice versa. The calibration curves for both methods were linear (r = 0.99) over a concentration range of 0.3–16 μg/mL and 0.5–16 μg/mL for levofloxacin and minocycline, respectively, with precision, accuracy and recovery in agreement with international guidelines requirement. Levofloxacin revealed stability in all media and conditions, including at 37°C, with exception to freeze–thaw cycle conditions. Minocycline presented a more accentuated degradation profile over prolonged time courses, when compared to levofloxacin. Reported data is of utmost interest for pharma and biomaterials fields regarding the research and development of new local drug-delivery-systems containing either of these two antibiotics, namely when monitoring the in vitro release studies of those systems. Simple, economic and environmental friendly high-performance liquid chromatography methods for levofloxacin and minocycline quantification in biomimetic media were developed and validate including their stability at body temperature, an often neglected evaluation parameter. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin and minocycline quantification the UV detection was set at 284 and at 273 nm, respectively. The separation of both antibiotics was achieved using a reversed-phase column and a mobile phase consisting of acetonitrile and water (15:85) with 0.6% triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline was used and vice versa. The calibration curves for both methods were linear (r = 0.99) over a concentration range of 0.3–16 μg/mL and 0.5–16 μg/mL for levofloxacin and minocycline, respectively, with precision, accuracy and recovery in agreement with international guidelines requirement. Levofloxacin revealed stability in all media and conditions, including at 37°C, with exception to freeze–thaw cycle conditions. Minocycline presented a more accentuated degradation profile over prolonged time courses, when compared to levofloxacin. Reported data is of utmost interest for pharma and biomaterials fields regarding the research and development of new local drug-delivery-systems containing either of these two antibiotics, namely when monitoring the in vitro release studies of those systems. This is a sample of graphical abstract. Simple, economic and fast HPLC methods for levofloxacin and minocycline analysis. Levofloxacin and minocycline quantification in NaCl, PBS and Müeller-Hinton media. Analytes quantification using the internal standard method. Stability studies of both antibiotics, including at body temperature. Validated methods with acceptable linearity, precision, accuracy and recovery. Useful for antibiotics monitoring through in vitro drug release and microbiological assays.