The most important characteristic of exfoliation syndrome (XFS) is that it involves a greater risk of developing glaucoma. In comparison with other forms of open-angle glaucoma, exfoliation glaucoma is more resistant to medical therapy and progresses faster. Possible pathologic mechanisms of glaucoma development in XFS comprise: (1) elevated intraocular pressure (IOP) caused by functional impairment of aqueous humor outflow due to deposition of exfoliation material in the trabecular meshwork and trabecular cell dysfunction, (2) XFS-associated connective tissue elastosis leading to structural and functional alterations of the lamina cribrosa which increases the vulnerability toward elevated IOP and development of glaucomatous optic neuropathy, (3) elevated IOP due to closure of the anterior chamber angle accompanied by forward displacement of the crystalline lens due to zonular weakness, (4) presumable primary functional impairment of retinal ganglion cells. In addition to the discovery of lysyl oxidase-like 1, further genetic associations have been identified and knowledge related to XFS etiology and pathophysiology has markedly increased over the past 10 years. Further cell biological investigations navigated by the molecular genetics underlying XFS will eventually lead to a better understanding of the complex mechanisms of exfoliation glaucoma.
We report a case of partial oculomotor palsy due to a brainstem infarction. A 70-year-old female noted a sudden onset of double vision. Visual acuity was normal in both eyes. Pupils were round and isocoric. The right eye was hypotropic and showed an elevation deficit. Bell’s phenomenon was not evident in the right eye. MRI showed a low intensity on the T1-weighted image and a high intensity on the T2-weighted image in the right ventrolateral portion of the mesencephalon. The partial oculomotor paresis of this case reflects damage of the oculomotor nerve fascicles that supply the inferior oblique and superior rectus muscles. We diagnosed the case as right oculomotor fascicular syndrome. This case report also suggests that acquired monocular elevation paresis can be caused by a lesion in the midbrain.
To investigate the association between the additive effects of genetic variants associated with intraocular pressure (IOP) and IOP, vertical cup-to-disc ratio (VCDR), and high tension glaucoma (HTG) or normal tension glaucoma (NTG) as phenotypic features of primary open-angle glaucoma (POAG), and to evaluate the clinical usefulness of the additive effects of IOP-related genetic variants for predicting IOP elevation, Japanese patients with HTG (n = 255) and NTG (n = 261) and 246 control subjects were genotyped for nine IOP-related genetic variants near CAV2, GAS7, GLCCI1/ICA1, ABCA1, ARHGEF12, FAM125B, FNDC3B, ABO, and PTPRJ/AGBL2. The total number of risk alleles of these genetic variants was calculated for each participant as a genetic risk score (GRS), and the association between the GRS and the maximum IOP, mean VCDR, and phenotype (HTG or NTG) of POAG was evaluated. As the GRS increased, the maximum IOP (P = 0.012) and VCDR (P = 0.010) significantly increased. The GRS (9.1±1.9) in patients with HTG was significantly higher (P = 0.011) than that (8.7±1.8) in control subjects. The patients with GRS≥12 as a cut-off value had a 2.54 times higher (P = 0.0085) risk on HTG (maximum IOP≥22mmHg) compared with all patients. The IOP-related GRS approach substantiated that the IOP and VCDR were increased by the additive effects of IOP-related genetic variants in POAG. The high IOP-related GRS in patients with HTG but not NTG shows that there are differences in the genetic background between HTG and NTG and supports the notion that the phenotype (HTG or NTG) in patients with POAG depends on the additive effects of IOP-related genetic variants. The above-mentioned cut-off value of IOP-related GRS may be clinically useful for predicting the risk of IOP elevation.
Human herpesvirus 6B (HHV-6B) is known to cause exanthema subitem and has been detected in various ocular diseases, including keratitis, uveitis, optic neuritis, and endophthalmitis; however, the long-term outcome after the reactivation of HHV-6B has not been well-addressed. Sugita et al. previously reported the concomitant presence of HHV-6B with herpes simplex virus-1 (HSV-1) in the aqueous fluid at the onset of corneal endotheliitis. We focused on the same patient with corneal endotheliitis, in whom both HSV-1 and HHV-6B sequences were observed, and reported the clinical course and long-term outcomes.A 64-year-old woman was referred to our center for visual disturbances in the left eye. Her best-corrected visual acuity in the left eye was 0.5 and the left intraocular pressure was elevated to 33 mmHg. Mid-sized keratic precipitates and 2+ cells were observed in the anterior chamber with corneal endothelial edema and reduction of the corneal endothelial cell density to 1828 cells/mm2. The patient was diagnosed with corneal endotheliitis with increased intraocular pressure. Polymerase chain reaction analysis revealed the concomitant presence of both HSV-1 and HHV-6B sequences in the left aqueous fluid. After treatment with oral valacyclovir and topical betamethasone, her intraocular inflammation gradually improved and has not recurred at 12 years after corneal endotheliitis onset although corneal opacity remained.Reactivation of HHV-6B infection might be associated with HSV-1 corneal endotheliitis; however, no serious late sequelae occurred after appropriate treatment for HSV-1 infection in this immunocompetent host.
Diclofenac instillation is useful in preventing intraoperative miosis and macular edema caused by postoperative inflammation in cataract surgery; however, optimum efficacy is not attained when the instilled diclofenac strongly binds to albumin in patients' aqueous humor. Therefore, a method that inhibits diclofenac binding and increases the concentration of its free fraction is needed. We conducted a basic study regarding the effects of inhibitors on the binding of instilled diclofenac to albumin and endogenous substances in aqueous humor. Aqueous humor samples from 16 patients were pooled together for analysis. The free fraction of diclofenac was measured using ultrafiltration methods in various experiments with pooled and mimic aqueous humor. Free fraction of diclofenac, a site II drug, in pooled aqueous humor was 0.363 ± 0.013. The binding of diclofenac in the presence of phenylbutazone (PB), a site I inhibitor, was significantly inhibited (free fraction = 0.496 ± 0.013); however, no significant inhibition by ibuprofen, a site II inhibitor, (free fraction = 0.379 ± 0.004), was observed. The unexpected result was due to free fatty acids (FFAs; palmitic acid (PA)) and L-tryptophan (Trp). The inhibition of diclofenac binding by PB in the mimic aqueous humor containing these endogenous substances revealed significant binding inhibition in the presence of PA and Trp. Diclofenac is strongly rebound from site II to site I in the presence of FFAs and Trp in the aqueous humor because FFAs and Trp induce a conformational change in albumin. Therefore, PB significantly inhibits the binding of diclofenac to albumin.