Rongalite was reported illegally used as a food additive for bleaching purposes and improving the tenderness of foodstuffs, which may endanger public health. At present, rongalite was mostly detected by indirect methods via derivatization or determining its decomposition products. In this study, we developed a new fluorescence sensor for the direct quantification of rongalite based on the principles: (1) dopamine reacts with resorcinol and generates strong fluorophore (azamonardine); (2) rongalite could inhibit the production of fluorophores and then result in lower fluorescence intensity. Hence, the rongalite concentration was inversely proportional to fluorescence intensity of fluorophore. Several crucial reaction conditions of fluorescence sensor were further optimized, such as dopamine and resorcinol concentration, pH values, and reaction time. Under the optimal conditions, the limit of detection of fluorescence sensor was 0.28-0.38 μg/g in vermicelli, wheat and rice powder samples, exhibiting almost 3.5-fold improvement compared to that of lateral flow immunoassay. Moreover, the detection time was substantially decreased to 20 min. The recoveries in spiked samples were 80.7-102.1% with a coefficient of variation of less than 12.6%. In summary, we developed a direct, high throughput, selective and accurate fluorescence sensor that poses a promising application for the rapid detection of rongalite in foodstuffs.
KPT-335 (Verdinexor) is a novel SINE that potently inhibits the nucleoprotein Exportin 1 (XPO1/CRM1) of tumor cell lines and reduces the replication level of the influenza virus. KPT-335 is mainly used for the treatment of canine tumors. Drugs for the effective treatment of feline tumors are currently unavailable in China. KPT-335 may have potential in the treatment of cat tumors. However, the effects of KPT-335 in cats are unreported, and no relevant methodology has been established for pharmacokinetic studies. In this study, a UPLC-MS/MS method was developed to determine KPT-335 concentrations in cat plasma, followed by pharmacokinetic studies. Briefly, plasma proteins are precipitated with acetonitrile, and the supernatant was collected for detection after centrifugation. The linearity for KPT-335 in cat plasma was in the range of 5-1,000 ng/mL. Satisfactory accuracy and precision were obtained. The intra-day accuracy was between -4.10% and 10.48%, the precision was ≤4.65%; the inter-day accuracy was between -0.11% and 8.09%, and the precision was ≤5.85%. Intra-day and inter-day accuracy and precision were within regulatory limits. The results of preliminary pharmacokinetic studies were as follows: T
Enramycin, a common growth promoter utilized in chickens and pigs, is sensitive against Gram-positive bacteria, and the maximum residue limit (MRL) of enramycin set up by is 30 μg/kg. However, the methods have been reported for detecting enramycin have failed to meet the accuracy requirements, with the required limit of quantification being higher than the MRL. To address this issue, we developed a high-sensitive and robust analytical method based on ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC–MS/MS), to determine enramycin residues in swine tissues, including liver, kidney, pork, and fat. The ENV cartridge was selected to cleanup and enrich analytes after being extracted using a mixture of 55% methanol containing 0.2 M hydrochloric acid. With comprehensively validation, this established method was found great linearity of enramycin in each tissue, with a coefficient of variation above 0.99. Satisfactory recoveries from four different spiking levels were acquired (70.99–101.40%) while the relative standard deviations were all below 9%. The limit of quantification of enramycin in the present study is 5 μg/kg in fat and 10 μg/kg in other tissues, meeting the requirements for conducting the corresponding safety evaluation study. This method was demonstrated with excellent specificity, stability, and high sensitivity. To conclude, this novel approach is sufficiently sensitive and robust for the safety evaluation of enramycin in food products.