Isochoric freezing is a pressure freezing technique that could be used to retain the beneficial effects of food storage at temperatures below their freezing point without ice damage. In this study, potato cylinders were frozen in an isochoric system and examined using full factorial combinations of three processing procedures (immersed in water, vacuum-packed and immersed in ascorbic acid solution), four freezing temperatures/pressures (−3 °C/37 MPa, −6 °C/71 MPa, −9 °C/101 MPa and −15 °C/156 MPa) and two average compression rates (less than 0.02 and more than 0.16 MPa/s). The effects of process variables on critical quality attributes of frozen potatoes after thawing were investigated, including mass change, volume change, water holding capacity, color and texture. Processing procedure and freezing temperature/pressure were found to be highly significant factors, whereas the significance of the compression rate was lower. For the processing procedures, immersion in an isotonic solution of 5% ascorbic acid best preserved quality attributes. At the highest pressure level of 156 MPa and low compression rate of 0.02 MPa/s, potato samples immersed in ascorbic acid retained their color, 98.5% mass and 84% elasticity modulus value. These samples also showed a 1% increase in volume and 13% increase in maximum stress due to pressure-induced hardening.
Abstract Composite passive insulation technology has been proved to be an effective method to reduce heat leakage into the cryogenic storage tank. However, the current related research mainly focused on liquid hydrogen (LH2). The thermophysical properties of different cryogenic liquids and the thermal insulation materials at different temperatures are significantly different, so whether the results related to LH2 are applicable to other cryogenic liquids remains to be further determined. In fact, the insulation technology of LH2 itself also needs further study. In this paper, a thermodynamic calculation model of a composite insulation system including hollow glass microspheres (HGMs), multilayer insulation (MLI), and self-evaporating vapor cold shield (VCS) has been established. The accuracy of the calculation model was verified by the experimental results, and a comparative study on thermodynamic characteristics of the composite thermal insulation system with liquid methane, liquid oxygen (LO2), and LH2 was carried out. The results show that the heat leakage reduction of the proposed system for liquid methane, LO2, and LH2 is 25.6%, 29.7%, and 64.9%, respectively, compared with the traditional SOFI + MLI system (1 × 10−3 Pa). The type of liquid and the insulation system structure has a relatively large influence on the VCS optimal position. While for a specific insulation system structure, the insulation material thickness, storage pressure, and hot boundary temperature have a weak influence on the VCS optimal position.
Abstract The VM refrigerator with power being supplied by liquid nitrogen shows great potential for application below 10K. The 2D axisymmetric model refers to actual geometry under oscillating flow conditions is carried out using FLUENT software. The lowest temperature, the pressure in three cavities, the temperature profile along the regenerator is presented. The simulation results show good agreement with available data. Then the regenerator between cold and middle cavity is optimized to obtain the lowest temperature, it is filled with stainless steel screens and lead shot. It is found that there exists an optimal ratio of stainless steel screens and lead in the same length regenerator.