Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight β-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.
Digital light processing (DLP) is one of the most accurate and fastest additive manufacturingtechnologies to produce a variety of products, from patient-customized biomedical implants toconsumer goods; however, DLP’s use in tissue engineering is limited largely due to a lack ofbiodegradable resins. Herein, a library of biodegradable urethane acrylate-capped poly(esters)(with variations in molecular weight) is investigated as the basis for a DLP printable ink fortissue engineering. The synthesized oligomers show good printability in a DLP resin, capableof creating complex structures with mechanical properties matching those of medium-softtissues (1–3 MPa). While fabricated films from different molecular weight resins showed fewdifferences in surface topology, wettability, and protein adsorption, the adhesion and metabolicactivity of L929 and human dermal fibroblasts (HDFs) were significantly different: resins fromhigher molecular weight oligomers provided greater cell adhesion and metabolic activity. Theseprintable and biodegradable resins show the importance of oligomer molecular weight onscaffold properties, and facilitate the printing of elastomeric customizable scaffolds for a varietyof tissue engineering applications.
<div>Digital light processing (DLP) is one of the most accurate and fastest additive manufacturing</div><div>technologies to produce a variety of products, from patient-customized biomedical implants to</div><div>consumer goods; however, DLP’s use in tissue engineering is limited largely due to a lack of</div><div>biodegradable resins. Herein, a library of biodegradable urethane acrylate-capped poly(esters)</div><div>(with variations in molecular weight) is investigated as the basis for a DLP printable ink for</div><div>tissue engineering. The synthesized oligomers show good printability in a DLP resin, capable</div><div>of creating complex structures with mechanical properties matching those of medium-soft</div><div>tissues (1–3 MPa). While fabricated films from different molecular weight resins showed few</div><div>differences in surface topology, wettability, and protein adsorption, the adhesion and metabolic</div><div>activity of L929 and human dermal fibroblasts (HDFs) were significantly different: resins from</div><div>higher molecular weight oligomers provided greater cell adhesion and metabolic activity. These</div><div>printable and biodegradable resins show the importance of oligomer molecular weight on</div><div>scaffold properties, and facilitate the printing of elastomeric customizable scaffolds for a variety</div><div>of tissue engineering applications.</div>
In Nature, multicyclic peptides constitute a versatile molecule class with various biological functions. For their pharmaceutical exploitation, chemical methodologies that enable selective consecutive macrocyclizations are required. We disclose a combination of enzymatic macrocyclization, CLIPS alkylation, and oxime ligation to prepare tetracyclic peptides. Five new small molecular scaffolds and differently sized model peptides featuring noncanonical amino acids were synthesized. Enzymatic macrocyclization, followed by one-pot scaffold-assisted cyclizations, yielded 21 tetracyclic peptides in a facile and robust manner.
Abstract Protein–protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES‐PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function.
Galectin-3 (Gal-3) is a multifunctional lectin, unique to galectins by the presence of a long N-terminal tail (NT) off of its carbohydrate recognition domain (CRD). Many previous studies have investigated binding of small carbohydrates to its CRD. Here, we used nuclear magnetic resonance spectroscopy (15N–1H heteronuclear single quantum coherence data) to assess binding of 15N-Gal-3 (and truncated 15N-Gal-3 CRD) to several, relatively large polysaccharides, including eight varieties of galactomannans (GMs), as well as a β(1 → 4)-polymannan and an α-branched mannan. Overall, we found that these polysaccharides with a larger carbohydrate footprint interact primarily with a noncanonical carbohydrate-binding site on the F-face of the Gal-3 CRD β-sandwich, and to a less extent, if at all, with the canonical carbohydrate-binding site on the S-face. While there is no evidence for interaction with the NT itself, it does appear that the NT somehow mediates stronger interactions between the Gal-3 CRD and the GMs. Significant Gal-3 resonance broadening observed during polysaccharide titrations indicates that interactions occur in the intermediate exchange regime, and analysis of these data allows estimation of affinities and stoichiometries that range from 4 × 104 to 12 × 104 M−1 per site and multiple sites per polysaccharide, respectively. We also found that lactose can still bind to the CRD S-face of GM-bound Gal-3, with the binding of one ligand attenuating affinity of the other. These data are compared with previous results on Gal-1, revealing differences and similarities. They also provide research direction to the development of these polysaccharides as galectin-targeting therapeutics in the clinic.
Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting.