An all-metal end-fire leaky-wave antenna is proposed in this letter. The proposed antenna has a centipede-like structure, which consists of a feeding microstrip line and several periodical radiation elements. The all-metal antenna utilizes air medium to intrinsically realize the end-fire array factor. By periodically exciting radiation branch elements, the proposed antenna achieves end-fire radiation with vertical polarization. Compared with previous researches, the proposed antenna has higher end-fire gain and a compact all-metal structure, which contributes to fabrication convenience and low dielectric loss. A prototype of the proposed end-fire antenna is fabricated and tested. The measured results are consistent with full-wave simulation results. The length of the whole leaky-wave array is about 4.13 λ o , and the measured gain is 11.61 dBi in the end-fire direction at 5 GHz.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most widely used hole transport materials for perovskite solar cells (PVSCs) with a p‐i‐n structure. However, the solar cells based on PEDOT:PSS show a low photoconversion efficiency due to the poor crystallinity of a perovskite film on it. Besides, the acidity of PEDOT:PSS performance critically influences the long‐term stability of PVSCs. Herein, a layer of the discrete SnO 2 nanoparticle film is deposited on the surface of PEDOT:PSS to modify the surface of the PEDOT:PSS film. This discrete SnO 2 nanoparticle film acts as the buffer layer between the PEDOT:PSS and MAPbI 3 , which not only improves the crystallization of the quality of the perovskite film, but also provides a selective‐carrier pathway to enhance the extraction of holes and to block the diffusion of electrons. The SnO 2 modified devices show a power conversion efficiency of 18.04%, with a great improvement compared with the 12.24% efficiency of PEDOT:PSS only devices. This work demonstrates that it is possible to enhance the performance of PVSCs via n‐type nanoparticle modification of hole transport layer and provides a new guidance for PVSCs interface modification engineering.
A substrate-integrated suspended line triple-band multimode antenna with stacked patch and two L-strips is presented for multiband applications. The two L-strips connected the stacked patch by vias, which can be regarded as a modified step impedance resonator, are introduced for producing two resonant frequencies at 2.45 and 3.6 GHz by means of stimulating dual modes. The two resonant frequencies rely on not only the electrical length but also the impedance ratio. In the higher frequency band, resonant frequencies at 6.1 and 5.25 GHz are generated by the stacked patch and via which connects the feed line and the driven patch, respectively. The measured results reveal that the first band from 2.4 to 2.45 GHz with gain of 4.9 dBi, the second band from 3.52 to 3.6 GHz with gain of 6.2 dBi, and the third band from 5.12 to 6.18 GHz with gain of 10 dBi are acquired. In addition, the radiation patterns with stable property across the whole operating band are obtained.
Ammonia (NH3) is a harmful gas with irritating odor, and higher NH3 concentration was found in intensive poultry houses. Although the toxicity of NH3 is well known, little attention has been given to the mechanism of NH3 poisoning in chicken immune organs. To investigate NH3-caused inflammatory damage of broiler spleens, in this study, a broiler model for NH3 poisoning was established, and 3 levels (including microRNA [miRNA], mRNA, and protein) were performed using qRT-PCR and western blot. The results indicated that NH3 exposure caused inflammatory damage using microstructure observation; decreased 2 inflammation-related miRNAs (miR-133a and miR-6615), 2 cytokines secreted by T helper cells 1 (Th1), and heme oxygenase-1 (HO-1); and increased 2 target genes (LOC101747543 and mothers against decapentaplegic homolog 7 [SMAD7]) of the 2 miRNAs, 7 inflammation-related factors, 3 cytokines secreted by Th2, and 5 heat shock proteins (HSPs) in broiler spleens. Our study suggested that Th1/Th2 imbalance, nuclear factor-κB (NF-κB) pathway, and compensatory response of HSPs were involved in NH3-caused inflammatory damage in broiler spleens; there was immunotoxic effect in excess NH3 on broilers. For the first time, we discovered miR-6615 and LOC101747543 may be involved in the mechanism of broiler spleen inflammatory damage caused by NH3 via the NF-κB pathway, and further mechanism needs to be investigated. This study provides new insights for NH3 toxicity identification and risk assessment in animal husbandry production practice.
Dense arrays of tapered-slot or finline transitions have proven useful in the design of compact spatial power combiners. In this paper, a design procedure is established for tapered finline arrays, providing a broad-band impedance match to a target load over the waveguide band. The procedure is based on an extension of the Klopfenstein optimal taper design to non-TEM waveguiding structures, and employs the spectral-domain method for the computation of propagation constants in the array structure. The method has been experimentally verified for a small X-band array. Data are also presented, which show that insertion loss in the finline arrays is independent of the number of array elements, assuming the designs are optimized for the desired return-loss characteristics in each case.
Objective The main objective of this study was to explore and identify new genetic targets in small-cell lung cancer (SCLC) through transcriptomics analysis and Mendelian randomization (MR) analysis, which will help in the subsequent development of new therapeutic interventions. Methods In this study, we extracted the SCLC dataset from the Gene Expression Omnibus (GEO) database, processed the data, and screened out differentially expressed genes (DEGs) using R software. Based on expression quantitative trait loci data and the genome-wide association study data of SCLC, MR analysis was used to screen the genes closely related to SCLC disease, which intersect with DEGs to obtain co-expressed genes (CEGs), and the biological functions and pathways of CEGs were further explored by enrichment analysis. In addition, the CIBERSORT algorithm was applied to assess the level of immune cell infiltration in SCLC and to analyze the correlation between CEGs and immune cells. Meanwhile, we performed a survival analysis on these five CEGs using an independent cohort of SCLC patients. Finally, the results for the target genes were validated. Results In this study, 857 DEGs were identified, including 443 up-regulated and 414 down-regulated genes, and 5 CEGs ( PSAT1, PSRC1, COLEC12, PLLP, HP ) that were significantly associated with SCLC were identified through further intersecting. The results of enrichment analyses indicated that CEGs play important roles in several key functions and pathways. Immune-cell-related analysis revealed the unique distribution of immune cell infiltration in SCLC and the mechanism of immune cell regulation by CEGs. Survival analysis results indicated that PSRC1 was significantly correlated with the overall survival of SCLC, and the survival rate of the high-expression group was markedly lower than that of the low-expression group. Finally, the consistency of the results between the validation group analyses and MR analysis confirmed that the results of this study is reliable. Conclusion The CEGs and their associated functions and pathways screened in this study may be potential targets of therapeutic intervention in SCLC by targeting specific molecular pathways.
In this paper, we present new results in the development of a broad-band spatial power-combining system implemented in a standard X-band waveguide environment. Using 24 off-the-shelf GaAs monolithic-microwave integrated-circuit (MMIC) power amplifiers integrated with tapered-slot antenna arrays, the new combining circuit produced up to 126-W maximum power output with a gain variation of /spl plusmn/1.9 dB within the band of interest (8-11 GHz). This hybrid circuit combiner is transparent to the device technology, and also provides an excellent heat-sinking capacity, sustaining as much as 415 W of dc power consumed by the MMIC amplifiers. The modular architecture allows easy maintenance, variable output power level, and modular assembly. Results on graceful degradation are also presented, showing superb tolerance to device failure.